Blocks and modules for Whittaker pairs

被引:82
作者
Batra, Punita [2 ]
Mazorchuk, Volodymyr [1 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India
基金
瑞典研究理事会;
关键词
IRREDUCIBLE REPRESENTATIONS; VECTORS;
D O I
10.1016/j.jpaa.2010.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by recent activities on Whittaker modules over various (Lie) algebras, we describe a general framework for the study of Lie algebra modules locally finite over a subalgebra. As a special case, we obtain a very general set-up for the study of Whittaker modules, which includes, in particular, Lie algebras with triangular decomposition and simple Lie algebras of Cartan type. We describe some basic properties of Whittaker modules, including a block decomposition of the category of Whittaker modules and certain properties of simple Whittaker modules under some rather mild assumptions. We establish a connection between our general set-up and the general set-up of Harish-Chandra subalgebras in the sense of Drozd, Futorny and Ovsienko. For Lie algebras with triangular decomposition, we construct a family of simple Whittaker modules (roughly depending on the choice of a pair of weights in the dual of the Cartan subalgebra), describe their annihilators, and formulate several classification conjectures. In particular, we construct some new simple Whittaker modules for the Virasoro algebra. Finally, we construct a series of simple Whittaker modules for the Lie algebra of derivations of the polynomial algebra, and consider several finite-dimensional examples, where we study the category of Whittaker modules over solvable Lie algebras and their relation to Koszul algebras. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1552 / 1568
页数:17
相关论文
共 33 条
[1]  
7Dixmier J., 1996, Grad. Stud. Math., V11
[2]  
[Anonymous], 1981, Progress in Mathematics
[3]   ALGEBRAICALLY IRREDUCIBLE REPRESENTATIONS OF LIE-ALGEBRA SL(2) [J].
ARNAL, D ;
PINCZON, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (03) :350-359
[4]  
Backelin E, 1997, INT MATH RES NOTICES, V1997, P153
[5]   The extension group of the simple modules over the first Weyl algebra [J].
Bavula, VV .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :182-190
[6]  
Benkart G., 2009, Represent. Theory, V13, P141
[8]   Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras [J].
Christodoulopoulou, Konstantina .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2871-2890
[9]   Annihilators of tensor density modules [J].
Conley, Charles H. ;
Martin, Christiane .
JOURNAL OF ALGEBRA, 2007, 312 (01) :495-526
[10]  
DROZD YA, 1994, NATO ADV SCI INST SE, V424, P79