Time-series for ecasting using Bagging techniques and Reservoir Computing

被引:0
作者
Basterrech, Sebastian [1 ]
Snasel, Vaclav [2 ]
机构
[1] VSB Tech Univ Ostrava, IT4Innovat, Ostrava, Czech Republic
[2] VSB Tech Univ Ostrava, Ostrava, Czech Republic
来源
2013 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR) | 2013年
关键词
Bagging; Ensemble learning; Reservoir Computing; Recurrent Neural Network; Time series problems;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a general procedure to use Bagging techniques for time series processing and forecasting problems. Bagging is one of the most used techniques for combining several predictors in order to produce a highly accurate method. The method uses bootstrap replications of the original training set and for each replicate sample one predictor is generated. After that the method combines the predictors using the majority vote for classification problems and the average function for regression problems. In temporal learning tasks, the order serial of the data precludes to realize bootstrap samples. Here, we present an approach which uses a recurrent neural network to transform the spatio-temporal information of the input data in a new larger space. In this new space is possible to apply bootstrap techniques. In this initial paper, we evaluate our approach on 4 time series benchmarks using linear regressions. Although, the idea presented here is more general and can be used with other kind of statistical methods such that CART, SVM, and so on. The empirical results show the power of this new approach to achieve good performances in temporal learning tasks.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
[41]   Ability to generate output series for Hysteresis Reservoir Computing [J].
Saito, Tsukasa ;
Jin'no, Kenya .
18TH INTERNATIONAL SOC DESIGN CONFERENCE 2021 (ISOCC 2021), 2021, :179-180
[42]   A Multi-Reservoir Echo State Network with Multiple-Size Input Time Slices for Nonlinear Time-Series Prediction [J].
Li, Zigiang ;
Tanaka, Gouhei .
NEURAL INFORMATION PROCESSING, ICONIP 2021, PT II, 2021, 13109 :28-39
[43]   Noise effects on time delay reservoir computing using silicon microring resonators [J].
Donati, Giovanni ;
Argyris, Apostolos ;
Mirasso, Claudio R. ;
Mancinelli, Mattia ;
Pavesi, Lorenzo .
INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXVI, 2022, 12004
[44]   Multi-Reservoir Echo State Networks with Hodrick-Prescott Filter for nonlinear time-series prediction [J].
Li, Ziqiang ;
Liu, Yun ;
Tanaka, Gouhei .
APPLIED SOFT COMPUTING, 2023, 135
[45]   Time-Lag Selection for Time-Series Forecasting Using Neural Network and Heuristic Algorithm [J].
Surakhi, Ola ;
Zaidan, Martha A. ;
Fung, Pak Lun ;
Hossein Motlagh, Naser ;
Serhan, Sami ;
AlKhanafseh, Mohammad ;
Ghoniem, Rania M. ;
Hussein, Tareq .
ELECTRONICS, 2021, 10 (20)
[46]   Recurrent Kernel Extreme Reservoir Machine for Time Series Prediction [J].
Liu, Zongying ;
Loo, Chu Kiong ;
Masuyama, Naoki ;
Pasupa, Kitsuchart .
IEEE ACCESS, 2018, 6 :19583-19596
[47]   Covariance Features Improve Low-Resource Reservoir Computing Performance in Multivariate Time Series Classification [J].
Lawrie, Sofia ;
Moreno-Bote, Ruben ;
Gilson, Matthieu .
COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 :587-601
[48]   Time-Multiplexed Photonic Reservoir Computing [J].
Van der Sande, Guy ;
Harkhoe, Krishan ;
Pauwels, Jael ;
Verschaffelt, Guy .
AI AND OPTICAL DATA SCIENCES, 2020, 11299
[49]   Sparse reservoir computing with vertically coupled vortex spin-torque oscillators for time series prediction [J].
Shen, Haobo ;
Xu, Lie ;
Jin, Menghao ;
Li, Hai ;
Yu, Changqiu ;
Liu, Bo ;
Zhou, Tiejun .
NANOTECHNOLOGY, 2024, 35 (41)
[50]   Time-series prediction of steel corrosion in concrete using recurrent neural networks [J].
Ji, Haodong ;
Liu, Jin-Cheng ;
Ye, Hailong .
NONDESTRUCTIVE TESTING AND EVALUATION, 2025,