Pattern formation of a Schnakenberg-type plant root hair initiation model

被引:1
作者
Li, Yanqiu [1 ]
Jiang, Juncheng [1 ]
机构
[1] Nanjing Univ Technol, Puzhu S Rd, Nanjing 211816, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Schnakenberg-type model; pattern formation; global bifurcation; steady state solution; Hopf bifurcation; Turing bifurcation; STEADY-STATE SOLUTIONS; BIFURCATION-ANALYSIS; GLOBAL BIFURCATION; DIFFUSION; BRUSSELATOR; GLYCOLYSIS; EXISTENCE; DYNAMICS; SYSTEMS; BOUNDS;
D O I
10.14232/ejqtde.2018.1.88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concentrates on the diversity of patterns in a quite general Schnakenberg-type model. We discuss existence and nonexistence of nonconstant positive steady state solutions as well as their bounds. By means of investigating Turing, steady state and Hopf bifurcations, pattern formation, including Turing patterns, nonconstant spatial patterns or time periodic orbits, is shown. Also, the global dynamics analysis is carried out.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 39 条
  • [1] Mathematical Modeling of Plant Root Hair Initiation: Dynamics of Localized Patches
    Brena-Medina, V.
    Champneys, A. R.
    Grierson, C.
    Ward, M. J.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (01): : 210 - 248
  • [2] GLOBAL BIFURCATION IN THE BRUSSELATOR SYSTEM
    BROWN, KJ
    DAVIDSON, FA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (12) : 1713 - 1725
  • [3] EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN
    CASTETS, V
    DULOS, E
    BOISSONADE, J
    DEKEPPER, P
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (24) : 2953 - 2956
  • [4] Instabilities and patterns in coupled reaction-diffusion layers
    Catlla, Anne J.
    McNamara, Amelia
    Topaz, Chad M.
    [J]. PHYSICAL REVIEW E, 2012, 85 (02):
  • [5] Davidson FA, 2000, P ROY SOC EDINB A, V130, P507
  • [6] Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate
    Economou, Andrew D.
    Ohazama, Atsushi
    Porntaveetus, Thantrira
    Sharpe, Paul T.
    Kondo, Shigeru
    Basson, M. Albert
    Gritli-Linde, Amel
    Cobourne, Martyn T.
    Green, Jeremy B. A.
    [J]. NATURE GENETICS, 2012, 44 (03) : 348 - U163
  • [7] Ghergu M, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-642-22664-9
  • [8] Non-constant steady-state solutions for Brusselator type systems
    Ghergu, Marius
    [J]. NONLINEARITY, 2008, 21 (10) : 2331 - 2345
  • [9] Gilbarg D., 2001, Elliptic Partial Differential Equations of Second Order, V2nd ed.
  • [10] Mesa-type patterns in the one-dimensional Brusselator and their stability
    Kolokolnikov, T
    Erneux, T
    Wei, J
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 214 (01) : 63 - 77