Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition

被引:16
作者
Zuo, Jiabin [1 ,2 ]
An, Tianqing [1 ]
Li, Mingwei [3 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing, Jiangsu, Peoples R China
[2] Jilin Engn Normal Univ, Fac Appl Sci, Changchun, Jilin, Peoples R China
[3] Hohai Univ, Sch Earth Sci & Engn, Nanjing, Jiangsu, Peoples R China
关键词
Fountain theorem; Kirchhoff-type equation; Fractional p-Laplacian; Ambrosetti-Rabinowitz condition; NONTRIVIAL SOLUTIONS; EXISTENCE; MULTIPLICITY; THEOREMS;
D O I
10.1186/s13661-018-1100-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following superlinear p-Kirchhoff-type equation: { M(integral R-2N vertical bar u(x)-u(y)vertical bar(p)/vertical bar x-y vertical bar(N+ps) dx dy) (-Delta)(p)(s) u(x) - lambda vertical bar u vertical bar(p-2) u = g(x, u) in Omega, u = 0 in R-N\Omega, Under suitable assumptions on g(x, u) without the (AR) condition, the existence of infinitely many solutions for the Kirchhoff equation of a fractional p-Laplacian is obtained by using the fountain theorem. Our conclusions generalize and extend some existing results.
引用
收藏
页数:13
相关论文
共 28 条
[1]   Existence and multiplicity of solutions for a p(x)-Kirchhoff type equation [J].
Afrouzi, G. A. ;
Mirzapour, M. ;
Chung, N. T. .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 :95-109
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
[Anonymous], 1997, Minimax theorems
[4]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216
[5]   Superlinear nonlocal fractional problems with infinitely many solutions [J].
Binlin, Zhang ;
Bisci, Giovanni Molica ;
Servadei, Raffaella .
NONLINEARITY, 2015, 28 (07) :2247-2264
[6]   Nontrivial solutions of superlinear nonlocal problems [J].
Bisci, Giovanni Molica ;
Repovs, Dusan ;
Servadei, Raffaella .
FORUM MATHEMATICUM, 2016, 28 (06) :1095-1110
[7]   Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations [J].
Caponi, Maicol ;
Pucci, Patrizia .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :2099-2129
[8]  
Cerami G., 1978, I LOMBARDO ACCAD S A, V112, p332?336
[9]  
Cerami G., 1980, ANN MAT PUR APPL, V124, P161, DOI [10.1007/BF01795391, DOI 10.1007/BF01795391]
[10]   Existence and multiplicity results for infinitely many solutions for Kirchhoff-type problems in RN [J].
Chen, Peng ;
Tang, X. H. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (12) :1828-1837