Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis

被引:1566
作者
West, TO [1 ]
Post, WM [1 ]
机构
[1] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
关键词
D O I
10.2136/sssaj2002.1930
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Changes agricultural management can potentially increase the accumulation rate of soil organic C (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil C sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 +/- 14 g C m(-2) yr(-1), excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 20 +/- 12 g C m(-2) yr(-1), excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine mar L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5 to 10 yr with SOC reaching a new equilibrium in 15 to 20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40 to 60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.
引用
收藏
页码:1930 / 1946
页数:17
相关论文
共 117 条
[1]   CROP AND SOIL RESPONSE TO LONG-TERM TILLAGE PRACTICES IN THE NORTHERN GREAT-PLAINS [J].
AASE, JK ;
PIKUL, JL .
AGRONOMY JOURNAL, 1995, 87 (04) :652-656
[2]   EFFECT OF ORGANIC-MATTER ON BULK AND TRUE DENSITIES OF SOME UNCULTIVATED PODZOLIC SOILS [J].
ADAMS, WA .
JOURNAL OF SOIL SCIENCE, 1973, 24 (01) :10-17
[3]   TILLAGE-INDUCED DIFFERENCES IN ORGANIC-MATTER OF PARTICLE-SIZE FRACTIONS AND MICROBIAL BIOMASS [J].
ANGERS, DA ;
NDAYEGAMIYE, A ;
COTE, D .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (02) :512-516
[4]  
[Anonymous], 1997, SOIL ORGANIC MATTER
[5]  
[Anonymous], [No title captured]
[6]   EFFECTS OF TILL VS NO-TILL ON THE QUALITY OF SOIL ORGANIC-MATTER [J].
ARSHAD, MA ;
SCHNITZER, M ;
ANGERS, DA ;
RIPMEESTER, JA .
SOIL BIOLOGY & BIOCHEMISTRY, 1990, 22 (05) :595-599
[7]   SOIL ORGANIC-MATTER TURNOVER IN LONG-TERM FIELD EXPERIMENTS AS REVEALED BY C-13 NATURAL ABUNDANCE [J].
BALESDENT, J ;
WAGNER, GH ;
MARIOTTI, A .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1988, 52 (01) :118-124
[8]   EFFECT OF TILLAGE ON SOIL ORGANIC-CARBON MINERALIZATION ESTIMATED FROM C-13 ABUNDANCE IN MAIZE FIELDS [J].
BALESDENT, J ;
MARIOTTI, A ;
BOISGONTIER, D .
JOURNAL OF SOIL SCIENCE, 1990, 41 (04) :587-596
[9]   Soil structural quality, compaction and land management [J].
Ball, BC ;
Campbell, DJ ;
Douglas, JT ;
Henshall, JK ;
O'Sullivan, MF .
EUROPEAN JOURNAL OF SOIL SCIENCE, 1997, 48 (04) :593-601
[10]   QUANTIFICATION OF THE EFFECT OF SOIL ORGANIC-MATTER CONTENT ON SOIL PRODUCTIVITY [J].
BAUER, A ;
BLACK, AL .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (01) :185-193