Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms

被引:577
作者
Clausell-Tormos, Jenifer [1 ,2 ]
Lieber, Diana [1 ,2 ]
Baret, Jean-Christophe [1 ,2 ]
El-Harrak, Abdeslam [1 ,2 ]
Miller, Oliver J. [1 ,2 ]
Frenz, Lucas [1 ,2 ]
Blouwolff, Joshua [1 ,2 ,3 ]
Humphry, Katherine J. [3 ]
Koster, Sarah [3 ]
Duan, Honey [3 ]
Holtze, Christian [3 ]
Weitz, David A. [3 ]
Griffiths, Andrew D. [1 ,2 ]
Merten, Christoph A. [1 ,2 ]
机构
[1] Univ Strasbourg 1, Inst Sci & Ingn Supramol, F-67070 Strasbourg, France
[2] CNRS, UMR 7006, F-67083 Strasbourg, France
[3] Harvard Univ, Sch Engn & Appl Sci, Dept Phys, Cambridge, MA 02138 USA
来源
CHEMISTRY & BIOLOGY | 2008年 / 15卷 / 05期
基金
英国医学研究理事会;
关键词
D O I
10.1016/j.chembiol.2008.04.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput, cell-based assays require small sample volumes to reduce assay costs and to allow for rapid sample manipulation. However, further miniaturization of conventional microtiter plate technology is problematic due to evaporation and capillary action. To overcome these limitations, we describe droplet-based microfluidic platforms in which cells are grown in aqueous microcompartments separated by an inert perfluorocarbon carrier oil. Synthesis of biocompatible surfactants and identification of gas-permeable storage systems allowed human cells, and even a Multicellular organism (C. elegans), to survive and proliferate within the microcompartments for several days. Microcompartments containing single cells could be reinjected into a microfluidic device after incubation to measure expression of a reporter gene. This should open the way for high-throughput, cell-based screening that can use >1000-fold smaller assay volumes and has similar to 500x higher throughput than conventional microtiter plate assays.
引用
收藏
页码:427 / 437
页数:11
相关论文
共 43 条
[1]   Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices [J].
Adamson, David N. ;
Mustafi, Debarshi ;
Zhang, John X. J. ;
Zheng, Bo ;
Ismagilov, Rustem F. .
LAB ON A CHIP, 2006, 6 (09) :1178-1186
[2]   Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices [J].
Ahn, K ;
Kerbage, C ;
Hunt, TP ;
Westervelt, RM ;
Link, DR ;
Weitz, DA .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[3]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[4]   Optical barcoding of colloidal suspensions: applications in genomics, proteomics and drug discovery [J].
Battersby, BJ ;
Lawrie, GA ;
Johnston, APR ;
Trau, M .
CHEMICAL COMMUNICATIONS, 2002, (14) :1435-1441
[5]   On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets [J].
Beer, N. Reginald ;
Hindson, Benjamin J. ;
Wheeler, Elizabeth K. ;
Hall, Sara B. ;
Rose, Klint A. ;
Kennedy, Ian M. ;
Colston, Bill W. .
ANALYTICAL CHEMISTRY, 2007, 79 (22) :8471-8475
[6]   ATTACHMENT OF IN-111 LABELED ENDOTHELIAL-CELLS TO PRETREATED POLYTETRAFLUOROETHYLENE VASCULAR GRAFTS [J].
BUDD, JS ;
BELL, PRF ;
JAMES, RFL .
BRITISH JOURNAL OF SURGERY, 1989, 76 (12) :1259-1261
[7]   Drug discovery - The leading edge [J].
Chapman, T .
NATURE, 2004, 430 (6995) :109-+
[8]   Drug screening - Beyond the bottleneck [J].
Dove, A .
NATURE BIOTECHNOLOGY, 1999, 17 (09) :859-863
[9]   An integrated microfabricated cell sorter [J].
Fu, AY ;
Chou, HP ;
Spence, C ;
Arnold, FH ;
Quake, SR .
ANALYTICAL CHEMISTRY, 2002, 74 (11) :2451-2457
[10]   Micro fluid segment technique for screening and development studies on Danio rerio embryos [J].
Funfak, Anette ;
Broesing, Andreas ;
Brand, Michael ;
Koehler, Johann Michael .
LAB ON A CHIP, 2007, 7 (09) :1132-1138