Impact of Morphology on the High Cycle Fatigue Behavior of Ti-6Al-4V for Aerospace

被引:2
|
作者
Lee, Yoon-Seok [1 ]
Cho, Seungchan [2 ]
Ji, Changwook [3 ]
Jo, Ilguk [4 ]
Choi, Moonhee [1 ]
机构
[1] Korea Inst Ceram Engn & Technol KICET, Emerging Mat R&D Div, Jinju 52851, South Korea
[2] Korea Inst Mat Sci, Composites Res Div, Chang Won 51508, South Korea
[3] Korea Inst Ind Technol, Adv Forming Proc R&D Grp, Ulsan 44413, South Korea
[4] Dong Eui Univ, Dept Adv Mat Engn, Busan 47340, South Korea
关键词
alpha phase; hot deformation; mechanical properties; microstructure; fatigue behavior; Ti-6Al-4V alloy; MICROSTRUCTURE; TITANIUM;
D O I
10.3390/met12101722
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mechanical properties of Ti-6Al-4V alloy are affected by its microstructures. However, the effects of these microstructures on the high cycle fatigue behavior of Ti-6Al-4V alloy with a mixed structure (alpha + beta phases) remain unknown. In this study, three alloy specimens were prepared using different hot-deformation methods, and their microstructures were investigated by optical microscopy and scanning electron microscopy. Fatigue tests were then performed to determine their high cycle fatigue and fatigue crack propagation behavior. All specimens showed a bimodal structure, but the morphology of each phase (e.g., diameter, shape, and volume fraction) showed notable differences. Among the samples prepared, the forged sample (FS) showed the lowest fatigue strength in all cycles. The fatigue strength of the homogeneously rolled sample (HS) was slightly higher than that of the rolled sample (RS) below 10(6) cycles but lower above 10(6) cycles. Compared with those of RS and HS, the secondary alpha (alpha(s)) grain width of FS was twofold larger. The interconnected primary alpha (alpha(p)) phase clusters in HS appeared to promote microcrack propagation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Effect of plastic prestrain on high cycle fatigue of Ti-6Al-4V
    Lanning, DB
    Nicholas, T
    Haritos, GK
    MECHANICS OF MATERIALS, 2002, 34 (02) : 127 - 134
  • [22] Microstructure and Fatigue Behavior of EBSM Ti-6Al-4V Alloy
    Chen Wei
    Chen Zheyuan
    You Yang
    Li Jinshan
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 : 25 - 30
  • [23] EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY
    Zhu Lina
    Deng Caiyan
    Wang Dongpo
    Hu Shengsun
    ACTA METALLURGICA SINICA, 2016, 52 (05) : 583 - 591
  • [24] Role of microstructure on the fatigue crack propagation behavior of a friction stir welded Ti-6Al-4V
    Muzvidziwa, Milton
    Okazaki, Masakazu
    Suzuki, Kenji
    Hirano, Satoshi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 652 : 59 - 68
  • [25] The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V
    Bantounas, Ioannis
    Dye, David
    Lindley, Trevor C.
    ACTA MATERIALIA, 2009, 57 (12) : 3584 - 3595
  • [26] Solidification Behavior of Ti-6Al-4V Alloy
    Mizukami, Hideo
    Shirai, Yoshihisa
    Kawakami, Akira
    Mitchell, Alec
    ISIJ INTERNATIONAL, 2020, 60 (11) : 2455 - 2461
  • [27] Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V
    Sterling, Amanda J.
    Torries, Brian
    Shamsaei, Nima
    Thompson, Scott M.
    Seely, Denver W.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 655 : 100 - 112
  • [28] EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY
    Liu Xiaolong
    Sun Chengqi
    Zhou Yantian
    Hong Youshi
    ACTA METALLURGICA SINICA, 2016, 52 (08) : 923 - 930
  • [29] Optimized low-cycle fatigue behavior and fracture characteristics of Ti-6Al-4V alloy by Fe microalloying
    Sun, Yangyang
    Alexandrov, I. V.
    Dong, Yuecheng
    Valiev, R. Z.
    Chang, Hui
    Zhou, Lian
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 5277 - 5287
  • [30] The effect of porosity defects on the mid-cycle fatigue behavior of directed energy deposited Ti-6Al-4V
    Tang, Dingcheng
    He, Xiaofan
    Wu, Bin
    Wang, Xiaobo
    Wang, Tianshuai
    Li, Yuhai
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 119