LiFeP: A new anode material for lithium ion batteries

被引:16
作者
Luo, Jingjing [1 ]
Zhou, Jianbin [1 ]
Lin, Dan [2 ]
Ren, Yi [2 ]
Tang, Kaibin [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Transition metal phosphides; Anode; Lithium ion batteries; LiFeP; PHOTOELECTRON-SPECTROSCOPY; HIGH-CAPACITY; PERFORMANCE; GRAPHENE; PHOSPHORUS; FEP; PHOSPHATES; PHOSPHIDES; REACTIVITY; LITHIATION;
D O I
10.1016/j.jpowsour.2017.09.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal phosphides are promising anode materials for lithium ion batteries because of their abundant natural resources and high theoretical capacities. In this study, the electrochemical properties of LiFeP as an anode material for lithium ion battery were investigated for the first time. LiFeP powders were successfully synthesized by a conventional two-step solid-state reaction method. The results of Xray powder diffraction and selected area electron diffraction revealed that the layered plate-like LiFeP was stacked by the (001) crystal plane. As an electrode material, LiFeP delivered a superior reversible capacity of 507 mA h g(-1) at a high current density of 300 mA g(-1) after 300 cycles and excellent rate performance. After cycling, the layered structure can be well maintained, which would be greatly beneficial to the electrochemical performance of LiFeP. The reason for the increase in capacity was also investigated and can be attributed to the high number of conversion reactions of LiFeP and the generation of elemental P during cycling. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 50 条
  • [31] Electrochemical properties of iron oxides/carbon nanotubes as anode material for lithium ion batteries
    Zeng, Zhipeng
    Zhao, Hailei
    Lv, Pengpeng
    Zhang, Zijia
    Wang, Jie
    Xia, Qing
    JOURNAL OF POWER SOURCES, 2015, 274 : 1091 - 1099
  • [32] An alternative carbon source of silicon-based anode material for lithium ion batteries
    Zhou, Rong
    Guo, Huajun
    Yang, Yong
    Wang, Zhixing
    Li, Xinhai
    Zhou, Yu
    POWDER TECHNOLOGY, 2016, 295 : 296 - 302
  • [33] Antimony oxychloride/graphene aerogel composite as anode material for sodium and lithium ion batteries
    Lakshmi, K. P.
    Janas, K. J.
    Shaijumon, M. M.
    CARBON, 2018, 131 : 86 - 93
  • [34] Graphene foam as a stable anode material in lithium-ion batteries
    Yang, Jianhang
    Sagar, Rizwan Ur Rehman
    Anwar, Tauseef
    Li, Xiaocheng
    Qian, Zhang
    Liang, Tongxiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (04) : 5226 - 5234
  • [35] A review of research on hematite as anode material for lithium-ion batteries
    Xiaodong Zheng
    Jianlong Li
    Ionics, 2014, 20 : 1651 - 1663
  • [36] Si/Cu composite as anode material for lithium-ion batteries
    Zeng, Hong
    He, Yawen
    Chamas, Mohamad
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [37] Small Molecule Azaacene as an Anode Material for Lithium-Ion Batteries
    Sturman, James W.
    Grignon, Eloi
    McAllister, Bryony T.
    Yim, Chae-Ho
    Baranova, Elena A.
    Seferos, Dwight S.
    Abu-Lebdeh, Yaser
    ENERGY & FUELS, 2023, 37 (17) : 13397 - 13404
  • [38] Characterization of TiS2 as an Anode Material for Lithium Ion Batteries
    Chen Shi-Yu
    Wang Zhao-Xiang
    Fang Xiang-Peng
    Zhao Hai-Lei
    Liu Xiao-Jiang
    Chen Li-Quan
    ACTA PHYSICO-CHIMICA SINICA, 2011, 27 (01) : 97 - 102
  • [39] Novel mesoporous silicon nanorod as an anode material for lithium ion batteries
    Zhou, Yanli
    Jiang, Xiaolei
    Chen, Liang
    Yue, Jie
    Xu, Huayun
    Yang, Jian
    Qian, Yitai
    ELECTROCHIMICA ACTA, 2014, 127 : 252 - 258
  • [40] Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium Ion Batteries
    Kim, Sang-Wan
    Duc Tung Ngo
    Heo, Jaeyeong
    Park, Choong-Nyeon
    Park, Chan-Jin
    ELECTROCHIMICA ACTA, 2017, 238 : 319 - 329