Anisotropic Gigahertz Antiferromagnetic Resonances of the Easy-Axis van der Waals Antiferromagnet CrSBr

被引:35
作者
Cham, Thow Min Jerald [1 ]
Karimeddiny, Saba [1 ]
Dismukes, Avalon H. [3 ]
Roy, Xavier [3 ]
Ralph, Daniel C. [1 ,2 ]
Luo, Yunqiu Kelly [1 ,2 ,4 ]
机构
[1] Cornell Univ, Ithaca, NY 14850 USA
[2] Kavli Inst Cornell, Ithaca, NY 14853 USA
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
van der Waals magnet; antiferromagnetic resonance; triaxial magnetic anisotropy; interlayer exchange; microwave absorption spectroscopy;
D O I
10.1021/acs.nanolett.2c02124
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report measurements of antiferromagnetic resonances in the van der Waals easy-axis antiferromagnet CrSBr. The interlayer exchange field and magnetocrystalline anisotropy fields are comparable to laboratory magnetic fields, allowing a rich variety of gigahertz-frequency dynamical modes to be accessed. By mapping the resonance frequencies as a function of the magnitude and angle of applied magnetic field, we identify the different regimes of antiferromagnetic dynamics. The spectra show good agreement with a Landau-Lifshitz model for two antiferromagnetically coupled sublattices, accounting for interlayer exchange and triaxial magnetic anisotropy. Fits allow us to quantify the parameters governing the magnetic dynamics: At 5 K, the interlayer exchange field is mu H-0(E) = 0.395(2) T, and the hard and intermediate-axis anisotropy parameters are mu H-0(c) = 1.30(2) T and mu H-0(a) = 0.383(7) T. The existence of within-plane anisotropy makes it possible to control the degree of hybridization between the antiferromagnetic resonances using an in-plane magnetic field.
引用
收藏
页码:6716 / 6723
页数:8
相关论文
共 29 条
[1]  
Bae Y. J., ARXIV
[2]   Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide [J].
Baierl, S. ;
Mentink, J. H. ;
Hohenleutner, M. ;
Braun, L. ;
Do, T. -M. ;
Lange, C. ;
Sell, A. ;
Fiebig, M. ;
Woltersdorf, G. ;
Kampfrath, T. ;
Huber, R. .
PHYSICAL REVIEW LETTERS, 2016, 117 (19)
[3]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[4]  
Beck, 1990, Z ANORG ALLG CHEM, V585, P157
[5]   Reversible strain-induced magnetic phase transition in a van der Waals magnet [J].
Cenker, John ;
Sivakumar, Shivesh ;
Xie, Kaichen ;
Miller, Aaron ;
Thijssen, Pearl ;
Liu, Zhaoyu ;
Dismukes, Avalon ;
Fonseca, Jordan ;
Anderson, Eric ;
Zhu, Xiaoyang ;
Roy, Xavier ;
Xiao, Di ;
Chu, Jiun-Haw ;
Cao, Ting ;
Xu, Xiaodong .
NATURE NANOTECHNOLOGY, 2022, 17 (03) :256-+
[6]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[7]   MAGNETIC-PROPERTIES OF CRSBR [J].
GOSER, O ;
PAUL, W ;
KAHLE, HG .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 92 (01) :129-136
[8]   Controlling magnetism in 2D CrI3 by electrostatic doping [J].
Jiang, Shengwei ;
Li, Lizhong ;
Wang, Zefang ;
Mak, Kin Fai ;
Shan, Jie .
NATURE NANOTECHNOLOGY, 2018, 13 (07) :549-+
[9]   ANTIFERROMAGNETIC RESONANCE IN MNF2 [J].
JOHNSON, FM ;
NETHERCOT, AH .
PHYSICAL REVIEW, 1959, 114 (03) :705-716
[10]   Coherent terahertz control of antiferromagnetic spin waves [J].
Kampfrath, Tobias ;
Sell, Alexander ;
Klatt, Gregor ;
Pashkin, Alexej ;
Maehrlein, Sebastian ;
Dekorsy, Thomas ;
Wolf, Martin ;
Fiebig, Manfred ;
Leitenstorfer, Alfred ;
Huber, Rupert .
NATURE PHOTONICS, 2011, 5 (01) :31-34