Torsional Carbon Nanotube Artificial Muscles

被引:483
|
作者
Foroughi, Javad [1 ]
Spinks, Geoffrey M. [1 ]
Wallace, Gordon G. [1 ]
Oh, Jiyoung [2 ]
Kozlov, Mikhail E. [2 ]
Fang, Shaoli [2 ]
Mirfakhrai, Tissaphern [3 ]
Madden, John D. W. [3 ]
Shin, Min Kyoon [4 ,5 ]
Kim, Seon Jeong [4 ,5 ]
Baughman, Ray H. [2 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, Wollongong, NSW 2522, Australia
[2] Univ Texas Dallas, Alan G MacDiarmid Nanotech Inst, Richardson, TX 75083 USA
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[4] Hanyang Univ, Ctr Bioartificial Muscle, Seoul 133791, South Korea
[5] Hanyang Univ, Dept Biomed Engn, Seoul 133791, South Korea
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
YARNS; ACTUATORS; ELECTROLYTE; ARRAYS; MOTOR; TUBE;
D O I
10.1126/science.1211220
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000 degrees rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
引用
收藏
页码:494 / 497
页数:4
相关论文
共 50 条
  • [31] Enhanced carbon nanotube fibers by polyimide
    Fang, Chao
    Zhao, Jingna
    Jia, Jingjing
    Zhang, Zuoguang
    Zhang, Xiaohua
    Li, Qingwen
    APPLIED PHYSICS LETTERS, 2010, 97 (18)
  • [32] Graphene Electrodes for Artificial Muscles
    Min, Kyoungho
    Jung, Ji Young
    Han, Tae Hee
    Park, Younduk
    Jung, Cheolsoo
    Hong, Soon Man
    Koo, Chong Min
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2011, 539 : 260 - 265
  • [33] Thermoresponsive hydrogel artificial muscles
    Zhang, Xi
    Aziz, Shazed
    Salahuddin, Bidita
    Zhu, Zhonghua
    MATTER, 2023, 6 (09) : 2735 - 2775
  • [34] Polarization behaviors of twisted carbon nanotube fibers
    Zhou, Jinyuan
    Sun, Gengzhi
    Zhan, Zhaoyao
    An, Jianing
    Zhang, Yongzhe
    Zhang, Yani
    Zheng, Lianxi
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (09) : 1221 - 1226
  • [35] Polymeric materials as artificial muscles: an overview
    Ariano, Paolo
    Accardo, Daisy
    Lombardi, Mariangela
    Bocchini, Sergio
    Draghi, Lorenza
    De Nardo, Luigi
    Fino, Paolo
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2015, 13 (01): : 1 - 9
  • [36] Technologies and Sensors for Artificial Muscles in Rehabilitation
    Basu, Vina
    Cheng, Li
    Zheng, Bin
    SENSORS, 2024, 24 (23)
  • [37] Artificial Muscles: Mechanisms, Applications, and Challenges
    Mirvakili, Seyed M.
    Hunter, Ian W.
    ADVANCED MATERIALS, 2018, 30 (06)
  • [38] Multidirectional Artificial Muscles from Nylon
    Mirvakili, Seyed M.
    Hunter, Ian W.
    ADVANCED MATERIALS, 2017, 29 (04)
  • [39] Design of flat pneumatic artificial muscles
    Wirekoh, Jackson
    Park, Yong-Lae
    SMART MATERIALS AND STRUCTURES, 2017, 26 (03)
  • [40] Tough hydrogels for soft artificial muscles
    Oveissi, Farshad
    Fletcher, David F.
    Dehghani, Fariba
    Naficy, Sina
    MATERIALS & DESIGN, 2021, 203