Torsional Carbon Nanotube Artificial Muscles

被引:483
|
作者
Foroughi, Javad [1 ]
Spinks, Geoffrey M. [1 ]
Wallace, Gordon G. [1 ]
Oh, Jiyoung [2 ]
Kozlov, Mikhail E. [2 ]
Fang, Shaoli [2 ]
Mirfakhrai, Tissaphern [3 ]
Madden, John D. W. [3 ]
Shin, Min Kyoon [4 ,5 ]
Kim, Seon Jeong [4 ,5 ]
Baughman, Ray H. [2 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Excellence Electromat Sci, Wollongong, NSW 2522, Australia
[2] Univ Texas Dallas, Alan G MacDiarmid Nanotech Inst, Richardson, TX 75083 USA
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[4] Hanyang Univ, Ctr Bioartificial Muscle, Seoul 133791, South Korea
[5] Hanyang Univ, Dept Biomed Engn, Seoul 133791, South Korea
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
YARNS; ACTUATORS; ELECTROLYTE; ARRAYS; MOTOR; TUBE;
D O I
10.1126/science.1211220
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000 degrees rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
引用
收藏
页码:494 / 497
页数:4
相关论文
共 50 条
  • [21] Bio-inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles
    Kim, Shi Hyeong
    Kwon, Cheong Hoon
    Park, Karam
    Mun, Tae Jin
    Lepro, Xavier
    Baughman, Ray H.
    Spinks, Geoffrey M.
    Kim, Seon Jeong
    SCIENTIFIC REPORTS, 2016, 6
  • [22] Pressurized artificial muscles
    Zhang, Zhiye
    Philen, Michael
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2012, 23 (03) : 255 - 268
  • [23] Onion artificial muscles
    Chen, Chien-Chun
    Shih, Wen-Pin
    Chang, Pei-Zen
    Lai, Hsi-Mei
    Chang, Shing-Yun
    Huang, Pin-Chun
    Jeng, Huai-An
    APPLIED PHYSICS LETTERS, 2015, 106 (18)
  • [24] Hydraulic artificial muscles
    Tiwari, Rashi
    Meller, Michael A.
    Wajcs, Karl B.
    Moses, Caris
    Reveles, Ismael
    Garcia, Ephrahim
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2012, 23 (03) : 301 - 312
  • [25] Carbon nanotube plane fastener
    Hirahara, Kaori
    Ajioka, Shoichi
    Nakayama, Yoshikazu
    AIP ADVANCES, 2011, 1 (04):
  • [26] In-situ observation of carbon nanotube fiber spinning from vertically aligned carbon nanotube forest
    Iijima, Toru
    Oshima, Hisayoshi
    Hayashi, Yasuhiko
    Suryavanshi, Ulka Bhimrao
    Hayashi, Akari
    Tanemura, Masaki
    DIAMOND AND RELATED MATERIALS, 2012, 24 : 158 - 160
  • [27] Conducting polymer artificial muscles
    Baughman, RH
    SYNTHETIC METALS, 1996, 78 (03) : 339 - 353
  • [28] Artificial muscles for jaw movements
    Wang, Yuzhe
    Zhu, Jian
    EXTREME MECHANICS LETTERS, 2016, 6 : 88 - 95
  • [29] Chitosan/IPMC Artificial Muscles
    Shahinpoor, Mohsen
    ELECTROACTIVE POLYMERS: ADVANCES IN MATERIALS AND DEVICES, 2013, 79 : 32 - 40
  • [30] Knitting and weaving artificial muscles
    Maziz, Ali
    Concas, Alessandro
    Khaldi, Alexandre
    Stalhand, Jonas
    Persson, Nils-Krister
    Jager, Edwin W. H.
    SCIENCE ADVANCES, 2017, 3 (01):