In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries

被引:17
|
作者
Li, Jianwei [1 ,2 ]
Hong, Ningyun [2 ]
Luo, Ningjing [1 ]
Dong, Haobo [4 ]
Kang, Liqun [5 ]
Peng, Zhengjun [2 ]
Jia, Guofeng [2 ]
Chai, Guoliang [1 ]
Wang, Min [2 ]
He, Guanjie [3 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[2] Chinese Acad Sci, Qinghai Inst Salt Lakes, Key Lab Comprehens & Highly Efficient Utilizat Sa, Xining 810008, Peoples R China
[3] Univ Lincoln, Sch Chem, Joseph Banks Labs, Green Lane, Lincoln LN6 7DL, England
[4] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[5] UCL, Dept Chem Engn, London WC1E 7JE, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
in-situ electrochemical conversion; dual-ion pre-intercalated V2O5; electrolyte-controlled conversion; zinc ion batteries; V2O5; CONSEQUENCES;
D O I
10.1007/s40843-021-1893-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V2O5 nearly reached its energy/power ceiling due to the nature of micro/electronic structures and unfavourable phase transition during Zn2+ storage processes. Here, a simple and universal in-situ anodic oxidation method of quasi-layered CaV4O9 in a tailored electrolyte was developed to introduce dual ions (Ca(2+ )and Zn2+) into bilayer delta-V2O5 frameworks forming crystallographic ultra-thin vanadium bronzes, Ca0.12Zn0.12V2O5 center dot nH(2)O. The materials deliver transcendental maximum energy and power densities of 366 W h kg(-1) (478 mA h g(-1) @ 0.2 A g(-1)) and 6627 W kg(-1) (245 mA h g(-1) @ 10 A g(-1)), respectively, and the long cycling stability with a high specific capacity up to 205 mA h g(-1) after 3000 cycles at 10 A g(-1). The synergistic contributions of dual ions and Ca-2(+) electrolyte additives on battery performances were systematically investigated by multiple in-/ex-situ characterisations to reveal reversible structural/chemical evolutions and enhanced electrochemical kinetics, highlighting the significance of electrolyte-governed conversion reaction process. Through the computational approach, reinforced "pillar" effects, charge screening effects and regulated electronic structures derived from pre-intercalated dual ions were elucidated for contributing to boosted charge storage properties.
引用
收藏
页码:1165 / 1175
页数:11
相关论文
共 50 条
  • [41] Linear π-conjugated organic cathodes with dispersed redox-active units for high performance aqueous zinc-ion batteries
    Xu, Ting
    Su, Lun
    Ku, Caiyi
    Zhang, Yihao
    Chen, Lei
    Gou, Quan
    Fang, Siyu
    Xue, Ping
    Tang, Mi
    Wang, Chengliang
    Wang, Zhengbang
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [42] Conductive coating, cation-intercalation, and oxygen vacancies co-modified vanadium oxides as high-rate and stable cathodes for aqueous zinc-ion batteries
    Tan, Shandong
    Sang, Zhiyuan
    Yi, Zhehan
    Guo, Jingdong
    Zhang, Xueqi
    Li, Pinxiang
    Si, WenPing
    Liang, Ji
    Hou, Feng
    ECOMAT, 2023, 5 (04)
  • [43] In Situ Vanadium-Deficient Engineering of V2C MXene: A Pathway to Enhanced Zinc-Ion Batteries
    Wu, Bing
    Li, Min
    Mazanek, Vlastimil
    Liao, Zhongquan
    Ying, Yulong
    Oliveira, Filipa M.
    Dekanovsky, Lukas
    Jan, Luxa
    Hou, Guorong
    Antonatos, Nikolas
    Wei, Qiliang
    Li, Min
    Pal, Bhupender
    He, Junjie
    Konakova, Dana
    Vejmelkova, Eva
    Sofer, Zdenek
    SMALL METHODS, 2024, 8 (09)
  • [44] Cathode-Electrolyte Interface Modification by Binder Engineering for High-Performance Aqueous Zinc-Ion Batteries
    Dong, Haobo
    Liu, Ruirui
    Hu, Xueying
    Zhao, Fangjia
    Kang, Liqun
    Liu, Longxiang
    Li, Jianwei
    Tan, Yeshu
    Zhou, Yongquan
    Brett, Dan J. L.
    He, Guanjie
    Parkin, Ivan P. P.
    ADVANCED SCIENCE, 2023, 10 (05)
  • [45] Anti-freezing electrolyte modification strategies toward low-temperature aqueous zinc-ion batteries
    Yuan, Xinyao
    Zhang, Di
    Lu, Hongfei
    Duan, Chenxu
    Jin, Yang
    IET ENERGY SYSTEMS INTEGRATION, 2024, : 702 - 723
  • [46] Ultrafast synthesis of vanadium-based oxides with crystalline-amorphous heterostructure for advanced aqueous zinc-ion batteries
    Yan, Duan
    Li, Hanbo
    Yang, Aomen
    Wang, Menglian
    Nie, Kaiqi
    Lv, Xiaoxin
    Deng, Jiujun
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [47] Synthesis of binder-free hydrated vanadium oxide-polyaniline electrodes via in situ polymerization for high-performance aqueous zinc-ion batteries
    Ye, Sidi
    Sheng, Siqi
    Wang, Yanzhu
    Li, Jiaying
    Li, Qiumei
    Meng, Lili
    Chen, Qian
    Yao, Hua
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 166
  • [48] In Situ Induced Core-Shell Carbon-Encapsulated Amorphous Vanadium Oxide for Ultra-Long Cycle Life Aqueous Zinc-Ion Batteries
    Fei, Ban
    Liu, Zhihang
    Fu, Junjie
    Guo, Xuyun
    Li, Ke
    Zhang, Chaoqi
    Yang, Xuhui
    Cai, Daoping
    Liu, Ji
    Zhan, Hongbing
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (32)
  • [49] Regulating the Interlayer Spacing of Vanadium Oxide by In Situ Polyaniline Intercalation Enables an Improved Aqueous Zinc-Ion Storage Performance
    Yin, Chengjie
    Pan, Chengling
    Liao, Xiaobo
    Pan, Yusong
    Yuan, Liang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 39347 - 39354
  • [50] Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery
    Li, Rui
    Xing, Fei
    Li, Tianyu
    Zhang, Huamin
    Yan, Jingwang
    Zheng, Qiong
    Li, Xianfeng
    ENERGY STORAGE MATERIALS, 2021, 38 : 590 - 598