Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor

被引:13
作者
Lin, You [1 ,2 ]
Wang, Yishen [3 ]
Wang, Jianhui [2 ]
Wang, Siqi [3 ]
Shi, Di [3 ]
机构
[1] GEIRI North Amer, AI & Syst Analyt Grp, San Jose, CA 95134 USA
[2] Southern Methodist Univ, Dept Elect & Comp Engn, Dallas, TX 75205 USA
[3] GEIRI North Amer, San Jose, CA 95134 USA
关键词
Load modeling; Tensile stress; Computational modeling; Mathematical model; Parameter estimation; Voltage measurement; Reactive power; Dimensionality reduction; load modeling; parameter estimation; sensitivity analysis; tensor;
D O I
10.1109/TSG.2020.2978769
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Growing model complexities in load modeling have created high dimensionality in parameter estimations, and thereby substantially increasing associated computational costs. In this letter, a tensor-based method is proposed for identifying composite load modeling (CLM) parameters and for conducting a global sensitivity analysis. Tensor format and Fokker-Planck equations are used to estimate the power output response of CLM in the context of simultaneously varying parameters under their full parameter distribution ranges. The proposed tensor structure is shown as effective for tackling high-dimensional parameter estimation and for improving computational performances in load modeling through global sensitivity analysis.
引用
收藏
页码:2737 / 2740
页数:4
相关论文
共 50 条
  • [31] Tensor Low-Rank Discriminant Embedding for Hyperspectral Image Dimensionality Reduction
    Deng, Yang-Jun
    Li, Heng-Chao
    Fu, Kun
    Du, Qian
    Emery, William J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 7183 - 7194
  • [32] Hyperspectral image denoising using the robust low-rank tensor recovery
    Li, Chang
    Ma, Yong
    Huang, Jun
    Mei, Xiaoguang
    Ma, Jiayi
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (09) : 1604 - 1612
  • [33] Low-Rank Regularized Heterogeneous Tensor Decomposition Algorithm for Subspace Clustering
    Zhang Jing
    Fu Jianpeng
    Li Xinhui
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (07)
  • [34] INFERENCE OF POISSON COUNT PROCESSES USING LOW-RANK TENSOR DATA
    Bazerque, Juan Andres
    Mateos, Gonzalo
    Giannakis, Georgios B.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5989 - 5993
  • [35] Low-rank tensor ring learning for multi-linear regression
    Liu, Jiani
    Zhu, Ce
    Long, Zhen
    Huang, Huyan
    Liu, Yipeng
    PATTERN RECOGNITION, 2021, 113
  • [36] Low-Rank Characteristic Tensor Density Estimation Part I: Foundations
    Amiridi, Magda
    Kargas, Nikos
    Sidiropoulos, Nicholas D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 2654 - 2668
  • [37] LOW-RANK TENSOR KRYLOV SUBSPACE METHODS FOR PARAMETRIZED LINEAR SYSTEMS
    Kressner, Daniel
    Tobler, Christine
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) : 1288 - 1316
  • [38] A Low-Rank Tensor Model for Hyperspectral Image Sparse Noise Removal
    Deng, Lizhen
    Zhu, Hu
    Li, Yujie
    Yang, Zhen
    IEEE ACCESS, 2018, 6 : 62120 - 62127
  • [39] Hyperspectral Anomaly Detection Based on Adaptive Low-Rank Transformed Tensor
    Sun, Siyu
    Liu, Jun
    Zhang, Ziwei
    Li, Wei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9787 - 9799
  • [40] Global-Local Balanced Low-Rank Approximation of Hyperspectral Images for Classification
    Liu, Hui
    Jia, Yuheng
    Hou, Junhui
    Zhang, Qingfu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2013 - 2024