Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor

被引:13
作者
Lin, You [1 ,2 ]
Wang, Yishen [3 ]
Wang, Jianhui [2 ]
Wang, Siqi [3 ]
Shi, Di [3 ]
机构
[1] GEIRI North Amer, AI & Syst Analyt Grp, San Jose, CA 95134 USA
[2] Southern Methodist Univ, Dept Elect & Comp Engn, Dallas, TX 75205 USA
[3] GEIRI North Amer, San Jose, CA 95134 USA
关键词
Load modeling; Tensile stress; Computational modeling; Mathematical model; Parameter estimation; Voltage measurement; Reactive power; Dimensionality reduction; load modeling; parameter estimation; sensitivity analysis; tensor;
D O I
10.1109/TSG.2020.2978769
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Growing model complexities in load modeling have created high dimensionality in parameter estimations, and thereby substantially increasing associated computational costs. In this letter, a tensor-based method is proposed for identifying composite load modeling (CLM) parameters and for conducting a global sensitivity analysis. Tensor format and Fokker-Planck equations are used to estimate the power output response of CLM in the context of simultaneously varying parameters under their full parameter distribution ranges. The proposed tensor structure is shown as effective for tackling high-dimensional parameter estimation and for improving computational performances in load modeling through global sensitivity analysis.
引用
收藏
页码:2737 / 2740
页数:4
相关论文
共 50 条
  • [21] Low-Rank Tensor Regularized Fuzzy Clustering for Multiview Data
    Wei, Huiqin
    Chen, Long
    Ruan, Keyu
    Li, Lingxi
    Chen, Long
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (12) : 3087 - 3099
  • [22] Tensor Convolutional Dictionary Learning With CP Low-Rank Activations
    Humbert, Pierre
    Oudre, Laurent
    Vayatis, Nicolas
    Audiffren, Julien
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 785 - 796
  • [23] Multi-View Clustering by Low-Rank Tensor Decomposition
    Cheng S.
    Hao W.
    Li C.
    Zhang Z.
    Cao R.
    Li, Chen, 1600, Xi'an Jiaotong University (54): : 119 - 125and133
  • [24] THE EPSILON-ALTERNATING LEAST SQUARES FOR ORTHOGONAL LOW-RANK TENSOR APPROXIMATION AND ITS GLOBAL CONVERGENCE
    Yang, Yuning
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (04) : 1797 - 1825
  • [25] Computation of low-rank tensor approximation under existence constraint via a forward-backward algorithm
    Nazih, Marouane
    Minaoui, Khalid
    Sobhani, Elaheh
    Comon, Pierre
    SIGNAL PROCESSING, 2021, 188
  • [26] RGB-T Saliency Detection via Low-Rank Tensor Learning and Unified Collaborative Ranking
    Huang, Liming
    Song, Kechen
    Gong, Aojun
    Liu, Chuang
    Yan, Yunhui
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1585 - 1589
  • [27] Learning Nonlocal Sparse and Low-Rank Models for Image Compressive Sensing: Nonlocal sparse and low-rank modeling
    Zha, Zhiyuan
    Wen, Bihan
    Yuan, Xin
    Ravishankar, Saiprasad
    Zhou, Jiantao
    Zhu, Ce
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (01) : 32 - 44
  • [28] Hypergraph regularized low-rank tensor multi-view subspace clustering via L1 norm constraint
    Liu, Guoqing
    Ge, Hongwei
    Su, Shuzhi
    Wang, Shuangxi
    APPLIED INTELLIGENCE, 2023, 53 (12) : 16089 - 16106
  • [29] A Compact High-Dimensional Yield Analysis Method using Low-Rank Tensor Approximation
    Shi, Xiao
    Yan, Hao
    Huang, Qiancun
    Xuan, Chengzhen
    He, Lei
    Shi, Longxing
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2022, 27 (02)
  • [30] Logarithmic Norm Regularized Low-Rank Factorization for Matrix and Tensor Completion
    Chen, Lin
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3434 - 3449