Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor

被引:13
作者
Lin, You [1 ,2 ]
Wang, Yishen [3 ]
Wang, Jianhui [2 ]
Wang, Siqi [3 ]
Shi, Di [3 ]
机构
[1] GEIRI North Amer, AI & Syst Analyt Grp, San Jose, CA 95134 USA
[2] Southern Methodist Univ, Dept Elect & Comp Engn, Dallas, TX 75205 USA
[3] GEIRI North Amer, San Jose, CA 95134 USA
关键词
Load modeling; Tensile stress; Computational modeling; Mathematical model; Parameter estimation; Voltage measurement; Reactive power; Dimensionality reduction; load modeling; parameter estimation; sensitivity analysis; tensor;
D O I
10.1109/TSG.2020.2978769
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Growing model complexities in load modeling have created high dimensionality in parameter estimations, and thereby substantially increasing associated computational costs. In this letter, a tensor-based method is proposed for identifying composite load modeling (CLM) parameters and for conducting a global sensitivity analysis. Tensor format and Fokker-Planck equations are used to estimate the power output response of CLM in the context of simultaneously varying parameters under their full parameter distribution ranges. The proposed tensor structure is shown as effective for tackling high-dimensional parameter estimation and for improving computational performances in load modeling through global sensitivity analysis.
引用
收藏
页码:2737 / 2740
页数:4
相关论文
共 50 条
  • [1] NONPARAMETRIC LOW-RANK TENSOR IMPUTATION
    Bazerque, Juan Andres
    Mateos, Gonzalo
    Giannakis, Georgios B.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 876 - 879
  • [2] Low-Rank Tensor MMSE Equalization
    Ribeiro, Lucas N.
    de Almeida, Andre L. F.
    Mota, Joao C. M.
    2019 16TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2019, : 511 - 516
  • [3] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Liu, Guoqing
    Ge, Hongwei
    Su, Shuzhi
    Wang, Shuangxi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38141 - 38164
  • [4] Compact implicit surface reconstruction via low-rank tensor approximation
    Pan, Maodong
    Tong, Weihua
    Chen, Falai
    COMPUTER-AIDED DESIGN, 2016, 78 : 158 - 167
  • [5] Low-Rank Tensor Thresholding Ridge Regression
    Guo, Kailing
    Zhang, Tong
    Xu, Xiangmin
    Xing, Xiaofen
    IEEE ACCESS, 2019, 7 : 153761 - 153772
  • [6] Hyperspectral Image Denoising via Weighted Multidirectional Low-Rank Tensor Recovery
    Su, Yanchi
    Zhu, Haoran
    Wong, Ka-Chun
    Chang, Yi
    Li, Xiangtao
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (05) : 2753 - 2766
  • [7] Nonconvex Robust Low-Rank Tensor Reconstruction via an Empirical Bayes Method
    Chen, Wei
    Gong, Xiao
    Song, Nan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (22) : 5785 - 5797
  • [8] A NEW LOW-RANK TENSOR LINEAR REGRESSION WITH APPLICATION TO DATA ANALYSIS
    Pan, Chenjian
    He, Hongjin
    Ling, Chen
    PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (03): : 569 - 588
  • [9] Robust Low-Rank Tensor Recovery via Nonconvex Singular Value Minimization
    Chen, Lin
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9044 - 9059
  • [10] Hyperspectral Dimensionality Reduction by Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis
    Pan, Lei
    Li, Heng-Chao
    Deng, Yang-Jun
    Zhang, Fan
    Chen, Xiang-Dong
    Du, Qian
    REMOTE SENSING, 2017, 9 (05)