共 50 条
Notch Activation Enhances the Microglia-Mediated Inflammatory Response Associated With Focal Cerebral Ischemia
被引:150
作者:
Wei, Zelan
[1
]
Chigurupati, Srinivasulu
[1
]
Arumugam, Thiruma V.
[2
]
Jo, Dong-Gyu
[3
]
Li, He
[1
,4
]
Chan, Sic L.
[1
]
机构:
[1] Univ Cent Florida, Coll Med, Burnett Sch Biomed Sci, Orlando, FL 32816 USA
[2] Univ Queensland, Sch Biomed Sci, Brisbane, Qld, Australia
[3] Sungkyunkwan Univ, Coll Pharm, Suwon, South Korea
[4] Guangdong Pharmaceut Univ, Dept Biochem & Mol Biol, Guangzhou, Guangdong, Peoples R China
来源:
关键词:
apoptosis;
brain ischemia;
focal ischemia;
inflammation;
neuroprotection;
neuroregeneration;
NF-KAPPA-B;
TUMOR-NECROSIS-FACTOR;
UP-REGULATION;
BRAIN-DAMAGE;
STROKE;
CELLS;
PROLIFERATION;
DEATH;
D O I:
10.1161/STROKEAHA.111.614834
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
Background and Purpose-Activation of Notch worsens ischemic brain damage as antisense knockdown or pharmacological inhibition of the Notch pathway reduces the infarct size and improves the functional outcome in a mouse model of stroke. We sought to determine whether Notch activation contributes to postischemic inflammation by directly modulating the microglial innate response. Methods-The microglial response and the attendant inflammatory reaction were evaluated in Notch1 antisense transgenic (Tg) and in nontransgenic (non-Tg) mice subjected to middle cerebral artery occlusion with or without treatment with a gamma-secretase inhibitor (GSI). To investigate the impact of Notch on microglial effector functions, primary mouse microglia and murine BV-2 microglial cell line were exposed to oxygen glucose deprivation or lipopolysaccharide in the presence or absence of GSI. Immunofluorescence labeling, Western blotting, and reverse-transcription polymerase chain reaction were performed to measure microglial activation and production of inflammatory cytokines. The nuclear translocation of nuclear factor-kappa B in microglia was assessed by immunohistochemistry. The neurotoxic potential of microglia was determined in cocultures. Results-Notch1 antisense mice exhibit significantly lower numbers of activated microglia and reduced proinflammatory cytokine expression in the ipsilateral ischemic cortices compared to non-Tg mice. Microglial activation also was attenuated in Notch1 antisense cultures and in non-Tg cultures treated with GSI. GSI significantly reduced nuclear factor-kappa B activation and expression of proinflammatory mediators and markedly attenuated the neurotoxic activity of microglia in cocultures. Conclusions-These findings establish a role for Notch signaling in modulating the microglia innate response and suggest that inhibition of Notch might represent a complementary therapeutic approach to prevent reactive gliosis in stroke and neuroinflammation-related degenerative disorders. (Stroke. 2011;42:2589-2594.)
引用
收藏
页码:2589 / U344
页数:8
相关论文
共 50 条