Contribution of biodiversity to ecosystem functioning: a non-equilibrium thermodynamic perspective

被引:4
|
作者
Chakraborty, Amit [1 ,2 ]
Li, B. Larry [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Bot & Plant Sci, Ecol Complex & Modeling Lab, Riverside, CA 92521 USA
[2] Univ Calif Riverside, XIEG UCR Int Ctr Arid Land Ecol, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
ecosystem self-organization; non-equilibrium thermodynamics; functional diversity; phenotypic diversity; PHENOTYPIC PLASTICITY; ENERGY-FLOW; COMPETITION; DIVERSITY; EVOLUTION; RESOURCE; ECOLOGY; MASS; LAW;
D O I
10.3724/SP.J.1227.2011.00071
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ecosystem stays far from thermodynamic equilibrium. Through the interactions among biotic and abiotic components, and encompassing physical environments, ecosystem forms a dissipative structure that allows it to dissipate energy continuously and thereby remains functional over time. Biotic regulation of energy and material fluxes in and out of the ecosystem allows it to maintain a homeostatic state which corresponds to a self-organized state emerged in a non-equilibrium thermodynamic system. While the associated self-organizational processes approach to homeostatic state, entropy (a measure of irreversibility) degrades and dissipation of energy increases. We propose here that at a homeostatic state of ecosystem, biodiversity which includes both phenotypic and functional diversity, attains optimal values. As long as biodiversity remains within its optimal range, the corresponding homeostatic state is maintained. However, while embedded environmental conditions fluctuate along the gradient of accelerating changes, phenotypic diversity and functional diversity contribute inversely to the associated self-organizing processes. Furthermore, an increase or decrease in biodiversity outside of its optimal range makes the ecosystem vulnerable to transition into a different state.
引用
收藏
页码:71 / 74
页数:4
相关论文
共 50 条
  • [1] Contribution of biodiversity to ecosystem functioning:a non-equilibrium thermodynamic perspective
    Amit CHAKRABORTY
    B Larry LI
    JournalofAridLand, 2011, 3 (01) : 71 - 74
  • [2] Non-Equilibrium Thermodynamic Explanation of Domain Occurrences in Ferroics
    Ai, Shu-Tao
    Zhang, Shao-Yin
    Ning, Xue-Feng
    Wang, Yong-Long
    Xu, Chang-Tan
    FERROELECTRICS LETTERS SECTION, 2010, 37 (02) : 30 - 34
  • [3] Non-equilibrium Thermodynamic Theory of Ferroelectric Phase Transitions
    Ai, Shu-Tao
    Bo, Hui-Ping
    Zhang, Shao-Yin
    Cai, Yuan-Zhen
    FERROELECTRICS, 2015, 481 (01) : 166 - 188
  • [4] A non-equilibrium thermodynamic model for the crack propagation rate
    Haslach, Henry W., Jr.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2010, 14 (01) : 91 - 110
  • [5] A non-equilibrium thermodynamic model for the crack propagation rate
    Henry W. Haslach
    Mechanics of Time-Dependent Materials, 2010, 14 : 91 - 110
  • [6] Non-equilibrium thermodynamic potential and flux fluctuation theorem
    Criado-Sancho, M.
    Casas-Vazquez, J.
    Jou, D.
    PHYSICS LETTERS A, 2009, 373 (37) : 3301 - 3303
  • [7] Belowground biodiversity and ecosystem functioning
    Bardgett, Richard D.
    van der Putten, Wim H.
    NATURE, 2014, 515 (7528) : 505 - 511
  • [8] The prominence of and biases in biodiversity and ecosystem functioning research
    Caliman, Adriano
    Pires, Aliny F.
    Esteves, Francisco A.
    Bozelli, Reinaldo L.
    Farjalla, Vinicius F.
    BIODIVERSITY AND CONSERVATION, 2010, 19 (03) : 651 - 664
  • [9] Non-equilibrium thermodynamic approach to the change in political systems
    Byeon, JH
    SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE, 1999, 16 (03) : 283 - 291
  • [10] How community adaptation affects biodiversity-ecosystem functioning relationships
    Aubree, Flora
    David, Patrice
    Jarne, Philippe
    Loreau, Michel
    Mouquet, Nicolas
    Calcagno, Vincent
    ECOLOGY LETTERS, 2020, 23 (08) : 1263 - 1275