Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints

被引:67
|
作者
Sun, Yuxuan [1 ]
Zhou, Sheng [1 ]
Niu, Zhisheng [1 ]
Gunduz, Deniz [2 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2BT, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Federated edge learning; over-the-air computation; energy constraints; dynamic scheduling; Lyapunov optimization; CONVERGENCE; OPTIMIZATION; CHALLENGES; ALLOCATION; NETWORKS; DESIGN;
D O I
10.1109/JSAC.2021.3126078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning and wireless communication technologies are jointly facilitating an intelligent edge, where federated edge learning (FEEL) is emerging as a promising training framework. As wireless devices involved in FEEL are resource limited in terms of communication bandwidth, computing power and battery capacity, it is important to carefully schedule them to optimize the training performance. In this work, we consider an over-the-air FEEL system with analog gradient aggregation, and propose an energy-aware dynamic device scheduling algorithm to optimize the training performance within the energy constraints of devices, where both communication energy for gradient aggregation and computation energy for local training are considered. The consideration of computation energy makes dynamic scheduling challenging, as devices are scheduled before local training, but the communication energy for over-the-air aggregation depends on the l(2)-norm of local gradient, which is known only after local training. We thus incorporate estimation methods into scheduling to predict the gradient norm. Taking the estimation error into account, we characterize the performance gap between the proposed algorithm and its offline counterpart. Experimental results show that, under a highly unbalanced local data distribution, the proposed algorithm can increase the accuracy by 4.9% on CIFAR-10 dataset compared with the myopic benchmark, while satisfying the energy constraints.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 50 条
  • [31] Energy and Spectrum Efficient Federated Learning via High-Precision Over-the-Air Computation
    Li, Liang
    Huang, Chenpei
    Shi, Dian
    Wang, Hao
    Zhou, Xiangwei
    Shu, Minglei
    Pan, Miao
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (02) : 1228 - 1242
  • [32] Knowledge-Guided Learning for Transceiver Design in Over-the-Air Federated Learning
    Zou, Yinan
    Wang, Zixin
    Chen, Xu
    Zhou, Haibo
    Zhou, Yong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 270 - 285
  • [33] Over-the-Air Federated Learning From Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3796 - 3811
  • [34] Semi-Asynchronous Over-the-Air Federated Learning Over Heterogeneous Edge Devices
    Kou, Zhoubin
    Ji, Yun
    Yang, Danni
    Zhang, Sheng
    Zhong, Xiaoxiong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 110 - 125
  • [35] Spectrum Breathing: Protecting Over-the-Air Federated Learning Against Interference
    Wang, Zhanwei
    Huang, Kaibin
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 10058 - 10071
  • [36] Edge Federated Learning via Unit-Modulus Over-The-Air Computation
    Wang, Shuai
    Hong, Yuncong
    Wang, Rui
    Hao, Qi
    Wu, Yik-Chung
    Ng, Derrick Wing Kwan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3141 - 3156
  • [38] Energy Harvesting Aware Client Selection for Over-the-Air Federated Learning
    Chen, Caijuan
    Chiang, Yi-Han
    Lin, Hai
    Lui, John C. S.
    Ji, Yusheng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5069 - 5074
  • [39] Over-the-air Learning Rate Optimization for Federated Learning
    Xu, Chunmei
    Liu, Shengheng
    Huang, Yongming
    Huang, Chongwen
    Zhang, Zhaoyang
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [40] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756