Dynamic Scheduling for Over-the-Air Federated Edge Learning With Energy Constraints

被引:67
|
作者
Sun, Yuxuan [1 ]
Zhou, Sheng [1 ]
Niu, Zhisheng [1 ]
Gunduz, Deniz [2 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2BT, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Federated edge learning; over-the-air computation; energy constraints; dynamic scheduling; Lyapunov optimization; CONVERGENCE; OPTIMIZATION; CHALLENGES; ALLOCATION; NETWORKS; DESIGN;
D O I
10.1109/JSAC.2021.3126078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Machine learning and wireless communication technologies are jointly facilitating an intelligent edge, where federated edge learning (FEEL) is emerging as a promising training framework. As wireless devices involved in FEEL are resource limited in terms of communication bandwidth, computing power and battery capacity, it is important to carefully schedule them to optimize the training performance. In this work, we consider an over-the-air FEEL system with analog gradient aggregation, and propose an energy-aware dynamic device scheduling algorithm to optimize the training performance within the energy constraints of devices, where both communication energy for gradient aggregation and computation energy for local training are considered. The consideration of computation energy makes dynamic scheduling challenging, as devices are scheduled before local training, but the communication energy for over-the-air aggregation depends on the l(2)-norm of local gradient, which is known only after local training. We thus incorporate estimation methods into scheduling to predict the gradient norm. Taking the estimation error into account, we characterize the performance gap between the proposed algorithm and its offline counterpart. Experimental results show that, under a highly unbalanced local data distribution, the proposed algorithm can increase the accuracy by 4.9% on CIFAR-10 dataset compared with the myopic benchmark, while satisfying the energy constraints.
引用
收藏
页码:227 / 242
页数:16
相关论文
共 50 条
  • [21] Optimized Power Control Design for Over-the-Air Federated Edge Learning
    Cao, Xiaowen
    Zhu, Guangxu
    Xu, Jie
    Wang, Zhiqin
    Cui, Shuguang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (01) : 342 - 358
  • [22] User Scheduling for Federated Learning Through Over-the-Air Computation
    Ma, Xiang
    Sun, Haijian
    Wang, Qun
    Hu, Rose Qingyang
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [23] Over-the-Air Federated Learning via Weighted Aggregation
    Azimi-Abarghouyi, Seyed Mohammad
    Tassiulas, Leandros
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18240 - 18253
  • [24] Device Scheduling for Relay-Assisted Over-the-Air Aggregation in Federated Learning
    Zhang, Fan
    Chen, Jining
    Wang, Kunlun
    Chen, Wen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7412 - 7417
  • [25] Federated Learning Based on Over-the-Air Computation
    Yang, Kai
    Jiang, Tao
    Shi, Yuanming
    Ding, Zhi
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [26] Over-the-Air Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Shan, Hangguan
    Wu, Liantao
    Tian, Xiaohua
    Shi, Yuanming
    Zhou, Yong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5006 - 5021
  • [27] Multiple Parallel Federated Learning via Over-the-Air Computation
    Shi, Gaoxin
    Guo, Shuaishuai
    Ye, Jia
    Saeed, Nasir
    Dang, Shuping
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 1252 - 1264
  • [28] Decentralized Over-the-Air Federated Learning in Full-Duplex MIMO Networks
    Wang, Zhibin
    Zhou, Yong
    Shi, Yuanming
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 19142 - 19156
  • [29] Over-the-Air Federated Learning with Retransmissions
    Hellstrom, Henrik
    Fodor, Viktoria
    Fischione, Carlo
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 291 - 295
  • [30] Robust Over-the-Air Federated Learning
    Kim, Hwanjin
    Nam, Hongjae
    Love, David J.
    2024 58TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, CISS, 2024,