In Situ Halogen-Ion Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO2 Electroreduction to C2+ Products

被引:131
|
作者
Yang, Ruoou [1 ,2 ]
Duan, Junyuan [1 ,2 ]
Dong, Panpan [3 ]
Wen, Qunlei [1 ,2 ]
Wu, Mao [1 ,2 ]
Liu, Youwen [1 ,2 ]
Liu, Yan [3 ]
Li, Huiqiao [1 ,2 ]
Zhai, Tianyou [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Anhui Normal Univ, Coll Chem & Mat Sci, Wuhu 241000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
AgI-CuO; CO2; Electroreduction; Cu-0; Cu+ Sites; Iodine Ions Leaching; Tandem Catalysts; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROLYTE DESIGN; COPPER; SELECTIVITY; CONVERSION; PATHWAYS; ETHYLENE; INSIGHTS; CU;
D O I
10.1002/anie.202116706
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tandem catalysts can divide the reaction into distinct steps by local multiple sites and thus are attractive to trigger CO2RR to C2+ products. However, the evolution of catalysts generally exists during CO2RR, thus a closer investigation of the reconstitution, interplay, and active origin of dual components in tandem catalysts is warranted. Here, taking AgI-CuO as a conceptual tandem catalyst, we uncovered the interaction of two phases during the electrochemical reconstruction. Multiple operando techniques unraveled that in situ iodine ions leaching from AgI restrained the entire reduction of CuO to acquire stable active Cu-0/Cu+ species during the CO2RR. This way, the residual iodine species of the Ag matrix accelerated CO generation and iodine-induced Cu-0/Cu+ promotes C-C coupling. This self-adaptive dual-optimization endowed our catalysts with an excellent C2+ Faradaic efficiency of 68.9 %. Material operando changes in this work offer a new approach for manipulating active species towards enhancing C2+ products.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The enhanced local CO concentration for efficient CO2 electrolysis towards C2 products on tandem active sites
    He, Anbang
    Yang, Yong
    Zhang, Qiang
    Yang, Ming
    Zou, Qian
    Du, Jun
    Tao, Changyuan
    Liu, Zuohua
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [42] Nanoscale Cu-Ag Heterostructures for CO2 Reduction to C2+ Products
    Zhang, Siying
    Zhang, Bowen
    Yang, Shuaibing
    Shao, Tao
    Li, Xiaohan
    Cao, Rong
    Cao, Minna
    ACS APPLIED NANO MATERIALS, 2025, 8 (04) : 1893 - 1902
  • [43] Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products
    Luo, Tao
    Liu, Kang
    Fu, Junwei
    Chen, Shanyong
    Li, Hongmei
    Hu, Junhua
    Liu, Min
    JOURNAL OF ENERGY CHEMISTRY, 2022, 70 : 219 - 223
  • [44] Ag decorated-Cu2O catalysts with enhanced selectivity for CO2 electroreduction toward C2+ products
    Kim, Young Eun
    Park, Jeong Eun
    Lee, Ju Hyeok
    Choi, Hyuk
    Lee, Wonhee
    Ko, You Na
    Kim, Hyun You
    Park, Ki Tae
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (05):
  • [45] Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO
    Back, Seoin
    Yeom, Min Sun
    Jung, Yousung
    ACS CATALYSIS, 2015, 5 (09): : 5089 - 5096
  • [46] Selective Electroreduction of CO2 to Ethanol via Cobalt-Copper Tandem Catalysts
    Chala, Soressa Abera
    Liu, Rongji
    Oseghe, Ekemena O.
    Clausing, Simon T.
    Kampf, Christopher
    Bansmann, Joachim
    Clark, Adam H.
    Zhou, Yazhou
    Lieberwirth, Ingo
    Biskupek, Johannes
    Kaiser, Ute
    Streb, Carsten
    ACS CATALYSIS, 2024, 14 (20): : 15553 - 15564
  • [47] Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction
    Zheng, Wanzhen
    Yang, Jian
    Chen, Hengquan
    Hou, Yang
    Wang, Qi
    Gu, Meng
    He, Feng
    Xia, Ying
    Xia, Zheng
    Li, Zhongjian
    Yang, Bin
    Lei, Lecheng
    Yuan, Chris
    He, Qinggang
    Qiu, Ming
    Feng, Xinliang
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)
  • [48] Steering C-C Coupling by Hollow Cu2O@C/N Nanoreactors for Highly Efficient Electroreduction of CO2 to C2+ Products
    Meng, Xiangfu
    Huang, Hao
    Zhang, Xiaoxiao
    Hu, Lin
    Tang, Haibin
    Han, Miaomiao
    Zheng, Fangcai
    Wang, Hui
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (23)
  • [49] A Stable and Low-Cost Metal-Azolate Framework with Cyclic Tricopper Active Sites for Highly Selective CO2 Electroreduction to C2+ Products
    Huang, Da-Shuai
    Zhu, Hao-Lin
    Zhao, Zhen-Hua
    Huang, Jia-Run
    Liao, Pei-Qin
    Chen, Xiao-Ming
    ACS CATALYSIS, 2022, 12 (14) : 8444 - 8450
  • [50] SiO2 assisted Cu0-Cu+-NH2 composite interfaces for efficient CO2 electroreduction to C2+ products
    Zhang, Zi-Yang
    Tian, Hao
    Jiao, Han
    Wang, Xin
    Bian, Lei
    Liu, Yuan
    Khaorapapong, Nithima
    Yamauchi, Yusuke
    Wang, Zhong-Li
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (02) : 1218 - 1232