In Situ Halogen-Ion Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO2 Electroreduction to C2+ Products

被引:155
作者
Yang, Ruoou [1 ,2 ]
Duan, Junyuan [1 ,2 ]
Dong, Panpan [3 ]
Wen, Qunlei [1 ,2 ]
Wu, Mao [1 ,2 ]
Liu, Youwen [1 ,2 ]
Liu, Yan [3 ]
Li, Huiqiao [1 ,2 ]
Zhai, Tianyou [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Anhui Normal Univ, Coll Chem & Mat Sci, Wuhu 241000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
AgI-CuO; CO2; Electroreduction; Cu-0; Cu+ Sites; Iodine Ions Leaching; Tandem Catalysts; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ELECTROLYTE DESIGN; COPPER; SELECTIVITY; CONVERSION; PATHWAYS; ETHYLENE; INSIGHTS; CU;
D O I
10.1002/anie.202116706
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tandem catalysts can divide the reaction into distinct steps by local multiple sites and thus are attractive to trigger CO2RR to C2+ products. However, the evolution of catalysts generally exists during CO2RR, thus a closer investigation of the reconstitution, interplay, and active origin of dual components in tandem catalysts is warranted. Here, taking AgI-CuO as a conceptual tandem catalyst, we uncovered the interaction of two phases during the electrochemical reconstruction. Multiple operando techniques unraveled that in situ iodine ions leaching from AgI restrained the entire reduction of CuO to acquire stable active Cu-0/Cu+ species during the CO2RR. This way, the residual iodine species of the Ag matrix accelerated CO generation and iodine-induced Cu-0/Cu+ promotes C-C coupling. This self-adaptive dual-optimization endowed our catalysts with an excellent C2+ Faradaic efficiency of 68.9 %. Material operando changes in this work offer a new approach for manipulating active species towards enhancing C2+ products.
引用
收藏
页数:8
相关论文
共 50 条
[1]  
[Anonymous], 2019, ANGEW CHEM, V131, P17203
[2]  
[Anonymous], 2021, ANGEW CHEM-GER EDIT, V133, P23122
[3]  
[Anonymous], 2021, ANGEW CHEM, V133, P7680
[4]  
[Anonymous], 2021, ANGEW CHEM, V133, P11588
[5]  
[Anonymous], 2021, Angew. Chem, V133, P14450
[6]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[7]   Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes [J].
Chen, Xinyi ;
Chen, Junfeng ;
Alghoraibi, Nawal M. ;
Henckel, Danielle A. ;
Zhang, Ruixian ;
Nwabara, Uzoma O. ;
Madsen, Kenneth E. ;
Kenis, Paul J. A. ;
Zimmerman, Steven C. ;
Gewirth, Andrew A. .
NATURE CATALYSIS, 2021, 4 (01) :20-27
[8]   A Vibrational-Spectroscopic Study of the Species Present in the CO(2)-H(2)O System [J].
Davis, A. R. ;
Oliver, B. G. .
JOURNAL OF SOLUTION CHEMISTRY, 1972, 1 (04) :329-339
[9]   Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies [J].
Fan, Qun ;
Zhang, Mingli ;
Jia, Mingwen ;
Liu, Shizhen ;
Qiu, Jieshan ;
Sun, Zhenyu .
MATERIALS TODAY ENERGY, 2018, 10 :280-301
[10]   Selective CO2 Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyte-Driven Nanostructuring [J].
Gao, Dunfeng ;
Sinev, Ilya ;
Scholten, Fabian ;
Aran-Ais, Rosa M. ;
Divins, Nuria J. ;
Kvashnina, Kristina ;
Timoshenko, Janis ;
Roldan Cuenya, Beatriz .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (47) :17047-17053