Trend-Based Granular Representation of Time Series and Its Application in Clustering

被引:34
|
作者
Guo, Hongyue [1 ,2 ]
Wang, Lidong [3 ]
Liu, Xiaodong [4 ]
Pedrycz, Witold [5 ,6 ]
机构
[1] Dalian Maritime Univ, Sch Maritime Econ & Management, Dalian 116026, Peoples R China
[2] Dalian Maritime Univ, Collaborat Innovat Ctr Transport Studies, Dalian 116026, Peoples R China
[3] Dalian Maritime Univ, Coll Sci, Dalian 116026, Peoples R China
[4] Dalian Univ Technol, Coll Control Sci & Engn, Dalian 116024, Peoples R China
[5] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2V4, Canada
[6] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
Time series analysis; Market research; Time measurement; Dimensionality reduction; Data mining; Cybernetics; Aggregates; Clustering; similarity for granules; time series; trend-based granulation; INTERVAL-VALUED DATA; PREDICTION;
D O I
10.1109/TCYB.2021.3054593
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Granular computing has been an intense research area over the past two decades, focusing on acquiring, processing, and interpreting information granules. In this study, we focus on the granulation of time series and discover the overall structure of the original time series by clustering the granular time series. During the granulation process, when time series exhibit some trend (up trend, equal trend, or down trend) or consist of a variety of tendencies, the trend is essential to be involved to construct the granular time series. Following the principle of justifiable granularity, we propose to form a series of trend-based information granules to describe the original time series and effectively reduce its dimensionality. Then, the similarity measure between trend-based information granules is provided, and considering the dynamic feature of time-series data, dynamic time warping (DTW) distance is generalized to measure the distance for granular time series. In sum, we show here a novel way of forming trend-based granular time series and the corresponding similarity measure, then based on this, the hierarchical clustering of granular time series is realized. The proposed approach can capture the main essence of time series and help to reduce the computing overhead. Experimental results show that the designed approach can reveal meaningful trend-based information granules, and provide promising clustering results on UCR and real-world datasets.
引用
收藏
页码:9101 / 9110
页数:10
相关论文
共 50 条
  • [21] Time series clustering based on sparse subspace clustering algorithm and its application to daily box-office data analysis
    Yan Wang
    Yunian Ru
    Jianping Chai
    Neural Computing and Applications, 2019, 31 : 4809 - 4818
  • [22] Time series clustering based on sparse subspace clustering algorithm and its application to daily box-office data analysis
    Wang, Yan
    Ru, Yunian
    Chai, Jianping
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (09) : 4809 - 4818
  • [24] Multivariate Time Series Clustering and its Application in Industrial Systems
    Surmeli, Baris Gun
    Tumer, M. Borahan
    CYBERNETICS AND SYSTEMS, 2020, 51 (03) : 315 - 334
  • [25] DTSP-V:A Trend-based Top Scoring Pairs Method for Classification of Time Series Gene Expression Data
    Wu, Kaimin
    Nan, Xiaofei
    Chai, Yumei
    Wang, Liming
    Li, Kun
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1787 - 1794
  • [26] Time series anomaly detection via clustering-based representation
    Enayati, Elham
    Mortazavi, Reza
    Basiri, Abdolali
    Ghasemian, Javad
    Moallem, Mahmoud
    EVOLVING SYSTEMS, 2024, 15 (04) : 1115 - 1136
  • [27] Document clustering based on time series
    Matei, Liviu Sebastian
    Trausan-Matu, Stefan
    2015 19TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2015, : 128 - 133
  • [28] A Similarity Model Based On Trend For Time Series
    Chen, ShuaiFei
    Lv, Xin
    Yu, Lin
    Mao, YingChi
    Wang, LongBao
    Ma, HongXu
    14TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS, ENGINEERING AND SCIENCE (DCABES 2015), 2015, : 435 - 438
  • [29] Piecewise linear representation of time series based on mean trend in sliding window
    袁同雨
    吴绍春
    张建
    谷蓉蓉
    陈高照
    徐勇泉
    Advances in Manufacturing, 2011, (05) : 473 - 478
  • [30] Time-Series Clustering Based on the Characterization of Segment Typologies
    Guijo-Rubio, David
    Manuel Duran-Rosal, Antonio
    Antonio Gutierrez, Pedro
    Troncoso, Alicia
    Hervas-Martinez, Cesar
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (11) : 5409 - 5422