Structural Stability and Equivalence of Linear 2D Discrete Systems

被引:1
作者
Bachelier, Olivier
David, Ronan
Yeganefar, Nima [1 ,2 ]
Cluzeau, Thomas [3 ,4 ,5 ]
机构
[1] Univ Poitiers, TSA 41105, Batiment B25,2 Rue Pierre Brousse, F-86073 Poitiers, France
[2] LIAS ENSIP, TSA 41105, Batiment B25,2 Rue Pierre Brousse, F-86073 Poitiers, France
[3] Univ Limoges, 123 Ave Albert Thomas, F-87060 Limoges, France
[4] CNRS, 123 Ave Albert Thomas, F-87060 Limoges, France
[5] XLIM UMR 7252, 123 Ave Albert Thomas, F-87060 Limoges, France
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 09期
关键词
System theory; algebraic approaches; multidimensional systems; discrete systems; structural stability; stabilization methods; STATE-SPACE MODEL; STABILIZATION;
D O I
10.1016/j.ifacol.2016.07.514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study stability issues for linear two-dimensional (2D) discrete stems by means of the constructive algebraic analysis approach to linear systems theory. We provide a general definition of structural stability for linear 2D discrete systems which coincides with the existing definitions in the particular cases of the classical Roesser and Fornasini-Marchesini models. We then study the preservation of this structural stability by equivalence transformations. Finally, using the same framework, we consider the stabilization problem for equivalent linear systems. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:136 / 141
页数:6
相关论文
共 50 条
  • [41] H∞performance analysis for 2D discrete singular stochastic systems
    Ghamgui, Mariem
    Elloumi, Marwa
    Mehdi, Driss
    Bachelier, Olivier
    Chaabane, Mohamed
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (07) : 1478 - 1487
  • [42] State feedback H∞ control for discrete 2D switched systems
    Duan, Zhaoxia
    Xiang, Zhengrong
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (06): : 1513 - 1530
  • [43] Stochastic Stability of Some Classes of Nonlinear 2D Systems
    P. V. Pakshin
    J. P. Emelianova
    M. A. Emelianov
    K. Gałkowski
    E. Rogers
    Automation and Remote Control, 2018, 79 : 89 - 102
  • [44] Nonlinear impulsive systems: 2D stability analysis approach
    Rios, Hector
    Hetel, Laurentiu
    Efimov, Denis
    AUTOMATICA, 2017, 80 : 32 - 40
  • [45] Stochastic Stability of Some Classes of Nonlinear 2D Systems
    Pakshin, P. V.
    Emelianova, J. P.
    Emelianov, M. A.
    Gakowski, K.
    Rogers, E.
    AUTOMATION AND REMOTE CONTROL, 2018, 79 (01) : 89 - 102
  • [46] Stability Analysis for 2-D Discrete Systems with Varying Delay
    Ye, Shuxia
    Wang, Weiqun
    Yao, Juan
    11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 67 - 72
  • [47] ON THE STABILITY OF DISCRETE-TIME LINEAR INTERVAL SYSTEMS
    MYSZKOROWSKI, P
    AUTOMATICA, 1994, 30 (05) : 913 - 914
  • [48] Numerically Tractable Stability Tests for 2-D Singular Discrete-Time Systems
    Caldeira, Andre F.
    Coutinho, Daniel
    de Souza, Carlos E.
    Leite, Valter J. S.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3391 - 3396
  • [49] Algebraic Necessary and Sufficient Conditions for Testing Stability of 2-D Linear Systems
    Mohsenipour, Reza
    Agathoklis, Panajotis
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1825 - 1831
  • [50] Positive Switched 2D Linear Systems Described by the Roesser Models
    Kaczorek, Tadeusz
    EUROPEAN JOURNAL OF CONTROL, 2012, 18 (03) : 239 - 246