Structural Stability and Equivalence of Linear 2D Discrete Systems

被引:1
作者
Bachelier, Olivier
David, Ronan
Yeganefar, Nima [1 ,2 ]
Cluzeau, Thomas [3 ,4 ,5 ]
机构
[1] Univ Poitiers, TSA 41105, Batiment B25,2 Rue Pierre Brousse, F-86073 Poitiers, France
[2] LIAS ENSIP, TSA 41105, Batiment B25,2 Rue Pierre Brousse, F-86073 Poitiers, France
[3] Univ Limoges, 123 Ave Albert Thomas, F-87060 Limoges, France
[4] CNRS, 123 Ave Albert Thomas, F-87060 Limoges, France
[5] XLIM UMR 7252, 123 Ave Albert Thomas, F-87060 Limoges, France
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 09期
关键词
System theory; algebraic approaches; multidimensional systems; discrete systems; structural stability; stabilization methods; STATE-SPACE MODEL; STABILIZATION;
D O I
10.1016/j.ifacol.2016.07.514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study stability issues for linear two-dimensional (2D) discrete stems by means of the constructive algebraic analysis approach to linear systems theory. We provide a general definition of structural stability for linear 2D discrete systems which coincides with the existing definitions in the particular cases of the classical Roesser and Fornasini-Marchesini models. We then study the preservation of this structural stability by equivalence transformations. Finally, using the same framework, we consider the stabilization problem for equivalent linear systems. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:136 / 141
页数:6
相关论文
共 50 条
  • [31] Reachability of positive 2D fractional linear systems
    Kaczorek, T.
    PHYSICA SCRIPTA, 2009, T136
  • [32] An Algebraic Approach to the Observer-Based Feedback Stabilization of Linear 2D Discrete Models
    Bachelier, Olivier
    Cluzeau, Thomas
    David, Ronan
    Yeganefar, Nima
    IFAC PAPERSONLINE, 2017, 50 (01): : 1859 - 1864
  • [33] Finite-Time Stability and Control of 2D Continuous-Discrete Systems in Roesser Model
    Gao, Jingbo
    Wang, Weiqun
    Zhang, Guangchen
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 4789 - 4809
  • [34] LMI approach to stability of 2D positive systems
    Kaczorek, Tadeusz
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2009, 20 (01) : 39 - 54
  • [35] Testing of the stability of positive 2D systems with delays
    Kaczorek, Tadeusz
    PRZEGLAD ELEKTROTECHNICZNY, 2009, 85 (05): : 46 - 53
  • [36] POSITIVITY AND STABILIZATION OF FRACTIONAL 2D LINEAR SYSTEMS DESCRIBED BY THE ROESSER MODEL
    Kaczorek, Tadeusz
    Rogowski, Krzysztof
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2010, 20 (01) : 85 - 92
  • [37] 1D controllers for a class of 2D linear systems
    Benton, SE
    Rogers, E
    Owens, DH
    SYSTEM STRUCTURE AND CONTROL 1998 (SSC'98), VOLS 1 AND 2, 1998, : 305 - 310
  • [38] Stability and Robust Stability of 2D Discrete Fornasini-Marchesini Model with Multiplicative Noise
    Elloumi, Marwa
    Ghamgui, Mariem
    Mehdi, Driss
    Chaabane, Mohamed
    2017 6TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC' 17), 2017, : 616 - 621
  • [39] Stability testing of 2-D discrete linear systems by telepolation of an immittance-type tabular test
    Bistritz, Y
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (07): : 840 - 846
  • [40] On realization of 2D discrete systems by Fornasini-Marchesini model
    Xu, L
    Wu, LK
    Wu, QH
    Lin, ZP
    Xiao, YG
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2005, 3 (04) : 631 - 639