The extension of a functional equation of the Lambert W function

被引:0
作者
Mezo, Istvan [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, 219 Ningliu Rd, Nanjing, Jiangsu, Peoples R China
[2] Obuda Univ, John von Neumann Fac Informat, Budapest, Hungary
关键词
Lambert W function; functional equation; unwinding number; branches;
D O I
10.1080/10652469.2022.2039134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The principal branch of the Lambert W function satisfies a well-known functional equation with respect to the sum of two of its values, but this equation is valid only on a restricted set. In this paper, we extend this equation to all the branches of W and to the arbitrary complex linear combination of two values. The results give an application for the unwinding number, too.
引用
收藏
页码:761 / 765
页数:5
相关论文
共 50 条
  • [1] The Lambert W function and solutions to Kepler's equation
    Sengupta, Prasenjit
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 99 (01) : 13 - 22
  • [2] Comparison of the Lambert W-function based solutions to the Colebrook equation
    Brkic, Dejan
    ENGINEERING COMPUTATIONS, 2012, 29 (5-6) : 617 - 630
  • [3] Primes and the Lambert W function
    Visser, Matt
    MATHEMATICS, 2018, 6 (04):
  • [4] Applications of Lambert W Function
    Rathie, P. N.
    Silva, P. H. D.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 23 (D11): : 1 - 15
  • [5] ON THE GENERALIZATION OF THE LAMBERT W FUNCTION
    Mezo, Istvan
    Baricz, Arpad
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) : 7917 - 7934
  • [6] Winding Numbers, Unwinding Numbers, and the Lambert W Function
    Beardon, A. F.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (01) : 115 - 122
  • [7] The Lambert W function, Nuttall's integral, and the Lambert law
    Pakes, Anthony G.
    STATISTICS & PROBABILITY LETTERS, 2018, 139 : 53 - 60
  • [8] Wien peaks and the Lambert W function
    Stewart, Sean M.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2011, 33 (03):
  • [9] AN ALGORITHM FOR THE MATRIX LAMBERT W FUNCTION
    Fasi, Massimiliano
    Higham, Nicholas J.
    Iannazzo, Bruno
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) : 669 - 685
  • [10] The Lambert-Kaniadakis Wκ function
    da Silva, J. L. E.
    da Silva, G. B.
    Ramos, R., V
    PHYSICS LETTERS A, 2020, 384 (08)