Birth and death in discrete Morse theory

被引:3
作者
King, Henry [1 ]
Knudson, Kevin [2 ]
Kosta, Neza Mramor [3 ,4 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Univ Ljubljana, Dept Comp & Informat Sci, Ljubljana 61000, Slovenia
[4] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 61000, Slovenia
关键词
Discrete Morse theory; Birth-death point; COMPLEXES;
D O I
10.1016/j.jsc.2016.03.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Suppose M is a finite cell decomposition of a space X and that for 0 = t(0) < t(1) < ... < t(r) = 1 we have a discrete Morse function Ft(i), :M -> R It In this paper, we study the births and deaths of critical cells for the functions Ft(i), and present an algorithm for pairing the cells that occur in adjacent slices. We first study the case where the cell decomposition of X is the same for each and then generalize to the case where they may differ. This has potential applications in topological data analysis, where one has function values at a sample of points in some region in space at several different times or at different levels in an object. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 60
页数:20
相关论文
共 50 条
  • [41] Discrete Morse theory segmentation on high-resolution 3D lithic artifacts
    Bullenkamp, Jan Philipp
    Kaiser, Theresa
    Linsel, Florian
    Kroemker, Susanne
    Mara, Hubert
    IT-INFORMATION TECHNOLOGY, 2024,
  • [42] Morse Shellings Out of Discrete Morse Functions
    Welschinger, Jean-Yves
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, : 896 - 918
  • [43] Feature Extraction of Scattered Point Clouds Based on Discrete Morse Theory
    Hu Jiabei
    Liu Zhe
    Zhang Pengfei
    Geng Guohua
    Zhang Yuhe
    ACTA OPTICA SINICA, 2019, 39 (06)
  • [44] Topology of matching complexes of complete graphs via discrete Morse theory
    Mondal, Anupam
    Mukherjee, Sajal
    Saha, Kuldeep
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (03) : 17 - 40
  • [45] TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory
    Reininghaus, Jan
    Guenther, David
    Hotz, Ingrid
    Prohaska, Steffen
    Hege, Hans-Christian
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 198 - 208
  • [46] Discrete Morse theory for totally non-negative flag varieties
    Rietsch, Konstanze
    Williams, Lauren
    ADVANCES IN MATHEMATICS, 2010, 223 (06) : 1855 - 1884
  • [47] Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory
    David Günther
    Jan Reininghaus
    Hubert Wagner
    Ingrid Hotz
    The Visual Computer, 2012, 28 : 959 - 969
  • [48] Discrete Morse Functions from Fourier Transforms
    Engstrom, Alexander
    EXPERIMENTAL MATHEMATICS, 2009, 18 (01) : 45 - 53
  • [49] Strong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theorem
    Desamparados Fernández-Ternero
    Enrique Macías-Virgós
    Nicholas A. Scoville
    José Antonio Vilches
    Discrete & Computational Geometry, 2020, 63 : 607 - 623
  • [50] A combinatorial method to compute explicit homology cycles using Discrete Morse Theory
    Kozlov D.N.
    Journal of Applied and Computational Topology, 2020, 4 (1) : 79 - 100