Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks

被引:27
作者
Liao, Shuohao [1 ]
Vejchodsky, Tomas [2 ]
Erban, Radek [1 ]
机构
[1] Univ Oxford, Radcliffe Observ Quarter, Math Inst, Oxford OX2 6GG, England
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
基金
欧洲研究理事会;
关键词
gene regulatory networks; stochastic modelling; parametric analysis; high-dimensional computation; NOISE; CYCLE; SIMULATION; EXPRESSION; PRINCIPLES; EQUATIONS; INFERENCE; LANGEVIN; SYSTEMS; MODELS;
D O I
10.1098/rsif.2015.0233
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Mat lab implementation of the TPA is available at http://www.stobifan.org.
引用
收藏
页数:10
相关论文
共 51 条
[1]  
[Anonymous], 1997, Technical Report
[2]   Engineering stability in gene networks by autoregulation [J].
Becskei, A ;
Serrano, L .
NATURE, 2000, 405 (6786) :590-593
[3]   Numerical operator calculus in higher dimensions [J].
Beylkin, G ;
Mohlenkamp, MJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (16) :10246-10251
[4]  
Brophy JAN, 2014, NAT METHODS, V11, P508, DOI [10.1038/NMETH.2926, 10.1038/nmeth.2926]
[5]   The slow-scale stochastic simulation algorithm [J].
Cao, Y ;
Gillespie, DT ;
Petzold, LR .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
[6]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[7]   MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs [J].
Dhooge, A ;
Govaerts, W ;
Kuznetsov, YA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02) :141-164
[8]   FAST SOLUTION OF PARABOLIC PROBLEMS IN THE TENSOR TRAIN/QUANTIZED TENSOR TRAIN FORMAT WITH INITIAL APPLICATION TO THE FOKKER-PLANCK EQUATION [J].
Dolgov, S. V. ;
Khoromskij, B. N. ;
Oseledets, I. V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (06) :A3016-A3038
[9]   Simultaneous state-time approximation of the chemical master equation using tensor product formats [J].
Dolgov, Sergey ;
Khoromskij, Boris .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (02) :197-219
[10]   ANALYSIS OF A STOCHASTIC CHEMICAL SYSTEM CLOSE TO A SNIPER BIFURCATION OF ITS MEAN-FIELD MODEL [J].
Erban, Radek ;
Chapman, S. Jonathan ;
Kevrekidis, Ioannis G. ;
Vejchodsky, Tomas .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (03) :984-1016