Covariance Matrix Adaptation Evolutionary Strategy for the Solution of Transformer Design Optimization Problem

被引:0
作者
Tamilselvi, Selvaraj [1 ]
Baskar, Subramanian [1 ]
机构
[1] Thiagarajar Coll Engn, Madurai 625015, Tamil Nadu, India
来源
SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I (SEMCCO 2013) | 2013年 / 8297卷
关键词
Transformer design; CMA-ES; Magnetic material; Purchase cost; Total life-time cost; Volt per turn;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transformer design (TD) is a complex multi-variable, non-linear, multi-objective and mixed-variable problem. This paper discusses the application of Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) for distribution TD, minimizing three objectives; purchase cost, total life-time cost and total loss individually. Two independent variables; voltage per turn and type of magnetic material are proposed to append with the usual TD variables, aiming at cost effective and energy efficient TD. Three case studies with three sets of TD vectors are implemented to demonstrate the superiority of CMA-ES and modified design variables (MDV), in terms of cost savings and loss reduction. Fourth case study depicts the accuracy, faster convergence and consistency of CMA-ES. Effectiveness of the proposed methodologies has been examined with a sample 400KVA 20/0.4KV transformer design. Simulation results show that CMA-ES with MDV provide the best solution on comparison with conventional TD procedure and, Branch and bound algorithm for TD optimization problem.
引用
收藏
页码:47 / 58
页数:12
相关论文
共 15 条
[1]   Artificial intelligence combined with hybrid FEM-BE techniques for global transformer optimization [J].
Amoiralis, Eleftherios I. ;
Georgilakis, Pavlos S. ;
Kefalas, Thermistoklis D. ;
Tsili, Marina A. ;
Kladas, Antonios G. .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) :1633-1636
[2]   Transformer Design and Optimization: A Literature Survey [J].
Amoiralis, Eleftherios I. ;
Tsili, Marina A. ;
Kladas, Antonios G. .
IEEE TRANSACTIONS ON POWER DELIVERY, 2009, 24 (04) :1999-2024
[3]   Global Transformer Optimization Method Using Evolutionary Design and Numerical Field Computation [J].
Amoiralis, Eleftherios I. ;
Georgilakis, Pavlos S. ;
Tsili, Marina A. ;
Kladas, Antonios G. .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) :1720-1723
[4]   Al helps reduce transformer iron losses [J].
Georgilakis, P ;
Hatziargyriou, N ;
Paparigas, D .
IEEE COMPUTER APPLICATIONS IN POWER, 1999, 12 (04) :41-46
[5]   A heuristic solution to the transformer manufacturing cost optimization problem [J].
Georgilakis, Pavlos S. ;
Tsili, Marina A. ;
Souflaris, Athanassios T. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 181 (1-3) :260-266
[6]  
Georgilakis PS, 2009, POWER SYST, P3
[7]  
Georgilakis PS, 2009, POWER SYST, P1, DOI 10.1007/978-1-84882-667-0
[8]   A novel iron loss reduction technique for distribution transformers based on a combined genetic algorithm - Neural network approach [J].
Georgilakis, PS ;
Doulamis, ND ;
Doulamis, AD ;
Hatziargyriou, ND ;
Kollias, SD .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2001, 31 (01) :16-34
[9]  
Hansen N, 2006, STUD FUZZ SOFT COMP, V192, P75
[10]   Application of geometric programming to transformer design [J].
Jabr, RA .
IEEE TRANSACTIONS ON MAGNETICS, 2005, 41 (11) :4261-4269