The hierarchical structure and properties of multifunctional carbon nanotube fibre composites

被引:59
作者
Vilatela, Juan J. [1 ]
Khare, Rupesh [1 ,2 ]
Windle, Alan H. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
[2] Indian Inst Technol, Dept Met Engn & Mat Sci, Bombay 400076, Maharashtra, India
关键词
THERMAL-CONDUCTIVITY; STRENGTH;
D O I
10.1016/j.carbon.2011.10.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The axial mechanical, electrical and thermal properties of carbon nanotubes (CNTs) can be exploited macroscopically by assembling them parallel to each other into a fibre during their synthesis by chemical vapour deposition. Multifunctional composites with high volume fraction of CNT fibres are then made by direct polymer infiltration of an array of aligned fibres. The fibres have a very high surface area, causing the polymer to infiltrate them and resulting in a hierarchical composite structure. The electrical and thermal conductivities of CNT/epoxy composites are shown to be superior to those of equivalent specimens with T300 carbon fibre (CF) which is widely used in industry. From measurements of longitudinal coefficient of thermal expansion (CTE) of the composites we show that the CTE of CNT fibres is approximately -1.6 x 10(-6) K-1, similar to in-plane graphite. The combination of electrical, thermal and mechanical properties of CNT fibre composites demonstrates their potential for multifunctionality. (C) 2011 Published by Elsevier Ltd.
引用
收藏
页码:1227 / 1234
页数:8
相关论文
共 39 条
[1]   Thermal transport in MWCNT sheets and yarns [J].
Aliev, Ali E. ;
Guthy, Csaba ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Fischer, John E. ;
Baughman, Ray H. .
CARBON, 2007, 45 (15) :2880-2888
[2]  
Angstrm A. J., 1863, Lond. Edin. Dub. Philos. Mag. J. Sci, V25, P130, DOI [10.1080/14786446308643429, DOI 10.1080/14786446308643429]
[3]   STATIC CONDUCTIVITY AND SUPERCONDUCTIVITY OF CARBON NANOTUBES - RELATIONS BETWEEN TUBES AND SHEETS [J].
BENEDICT, LX ;
CRESPI, VH ;
LOUIE, SG ;
COHEN, ML .
PHYSICAL REVIEW B, 1995, 52 (20) :14935-14940
[4]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[5]   A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes [J].
Bradford, Philip D. ;
Wang, Xin ;
Zhao, Haibo ;
Maria, Jon-Paul ;
Jia, Quanxi ;
Zhu, Y. T. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (13) :1980-1985
[6]   Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites [J].
Cadek, M ;
Coleman, JN ;
Barron, V ;
Hedicke, K ;
Blau, WJ .
APPLIED PHYSICS LETTERS, 2002, 81 (27) :5123-5125
[7]  
Carothers W. H., 1932, J AM CHEM SOC, V54, P1579, DOI DOI 10.1021/JA01343A051
[8]   Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing [J].
Choi, ES ;
Brooks, JS ;
Eaton, DL ;
Al-Haik, MS ;
Hussaini, MY ;
Garmestani, H ;
Li, D ;
Dahmen, K .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (09) :6034-6039
[9]   An assessment of the science and technology of carbon nanotube-based fibers and composites [J].
Chou, Tsu-Wei ;
Gao, Limin ;
Thostenson, Erik T. ;
Zhang, Zuoguang ;
Byun, Joon-Hyung .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (01) :1-19
[10]   Mechanical reinforcement of polymers using carbon nanotubes [J].
Coleman, JN ;
Khan, U ;
Gun'ko, YK .
ADVANCED MATERIALS, 2006, 18 (06) :689-706