Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films

被引:299
作者
Kim, Jieun [1 ]
Saremi, Sahar [1 ]
Acharya, Megha [1 ]
Velarde, Gabriel [1 ]
Parsonnet, Eric [2 ]
Donahue, Patrick [1 ]
Qualls, Alexander [2 ]
Garcia, David [1 ]
Martin, Lane W. [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
关键词
THIN-FILMS; STRAIN; TEMPERATURE; PERFORMANCE; POLYMER;
D O I
10.1126/science.abb0631
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dielectric capacitors can store and release electric energy at ultrafast rates and are extensively studied for applications in electronics and electric power systems. Among various candidates, thin films based on relaxor ferroelectrics, a special kind of ferroelectric with nanometer-sized domains, have attracted special attention because of their high energy densities and efficiencies. We show that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films. Intrinsic point defects created by ion bombardment reduce leakage, delay low-field polarization saturation, enhance high-field polarizability, and improve breakdown strength. We demonstrate energy storage densities as high as similar to 133 joules per cubic centimeter with efficiencies exceeding 75%. Deterministic control of defects by means of postsynthesis processing methods such as ion bombardment can be used to overcome the trade-off between high polarizability and breakdown strength.
引用
收藏
页码:81 / +
页数:26
相关论文
共 34 条
[1]  
[Anonymous], 2010, NUCL INSTRUM METH B, DOI [DOI 10.1016/J.NIMB.2010.02.091, DOI 10.1016/j.nimb.2010.02.091]
[2]   Giant Piezoelectricity on Si for Hyperactive MEMS [J].
Baek, S. H. ;
Park, J. ;
Kim, D. M. ;
Aksyuk, V. A. ;
Das, R. R. ;
Bu, S. D. ;
Felker, D. A. ;
Lettieri, J. ;
Vaithyanathan, V. ;
Bharadwaja, S. S. N. ;
Bassiri-Gharb, N. ;
Chen, Y. B. ;
Sun, H. P. ;
Folkman, C. M. ;
Jang, H. W. ;
Kreft, D. J. ;
Streiffer, S. K. ;
Ramesh, R. ;
Pan, X. Q. ;
Trolier-McKinstry, S. ;
Schlom, D. G. ;
Rzchowski, M. S. ;
Blick, R. H. ;
Eom, C. B. .
SCIENCE, 2011, 334 (6058) :958-961
[3]  
Chiang Y.-M., 1997, Physical Ceramics
[4]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[5]   Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics [J].
Damjanovic, D .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (09) :1267-1324
[6]   Enhancement of Ferroelectric Curie Temperature in BaTiO3 Films via Strain-Induced Defect Dipole Alignment [J].
Damodaran, Anoop R. ;
Breckenfeld, Eric ;
Chen, Zuhuang ;
Lee, Sungki ;
Martin, Lane W. .
ADVANCED MATERIALS, 2014, 26 (36) :6341-6347
[7]   Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films [J].
Hao, Xihong ;
Wang, Ying ;
Zhang, Le ;
Zhang, Liwen ;
An, Shengli .
APPLIED PHYSICS LETTERS, 2013, 102 (16)
[8]   Designing Morphotropic Phase Composition in BiFeO3 [J].
Herklotz, Andreas ;
Rus, Stefania F. ;
Balke, Nina ;
Rouleau, Christopher ;
Guo, Er-Jia ;
Huon, Amanda ;
Santosh, K. C. ;
Roth, Robert ;
Yang, Xu ;
Vaswani, Chirag ;
Wang, Jigang ;
Orth, Peter P. ;
Scheurer, Mathias S. ;
Ward, Thomas Z. .
NANO LETTERS, 2019, 19 (02) :1033-1038
[9]  
Hu WB, 2013, NAT MATER, V12, P821, DOI [10.1038/NMAT3691, 10.1038/nmat3691]
[10]   Epitaxial Ferroelectric Heterostructures Fabricated by Selective Area Epitaxy of SrRuO3 Using an MgO Mask [J].
Karthik, J. ;
Damodaran, Anoop R. ;
Martin, Lane W. .
ADVANCED MATERIALS, 2012, 24 (12) :1610-1615