Functional equations for double zeta-functions

被引:27
作者
Matsumoto, K [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1017/S0305004103007035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
As the first step of research on functional equations for multiple zeta-functions, we present a candidate of the functional equation for a class of two variable double zeta-functions of the Hurwitz-Lerch type, which includes the classical Euler sum as a special case.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 11 条
[1]   Analytic continuation of multiple zeta-functions and their values at non-positive integers [J].
Akiyama, S ;
Egami, S ;
Tanigawa, Y .
ACTA ARITHMETICA, 2001, 98 (02) :107-116
[2]  
[Anonymous], AEQUATIONES MATH, DOI DOI 10.1007/PL00000117
[3]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[4]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[5]  
Ivi A., 1985, The Riemann zeta-function
[6]   ASYMPTOTIC EXPANSIONS OF THE MEAN-VALUES OF DIRICHLET L-FUNCTIONS [J].
KATSURADA, M ;
MATSUMOTO, K .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (01) :23-39
[7]   The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions I [J].
Matsumoto, K .
JOURNAL OF NUMBER THEORY, 2003, 101 (02) :223-243
[8]   Corrigendum and addendum to 'asymptotic series for double zeta, double gamma and Hecke L-functions' [J].
Matsumoto, K .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 132 :377-384
[9]  
MATSUMOTO K, IN PRESS NAGOYA MATH
[10]  
Titchmarsh E C., 1951, THEORY RIEMANN ZETA