Homological dimension of coalgebras and crossed coproducts

被引:11
作者
Dascalescu, S
Nastasescu, C
Torrecillas, B
机构
[1] Univ Bucharest, Fac Matemat, RO-70190 Bucharest 1, Romania
[2] Univ Almeria, Dept Algebra & Anal, Almeria 04071, Spain
关键词
coalgebras; homological dimension; crossed coproducts; Hopt algebras;
D O I
10.1023/A:1017529005217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a Hopf k-algebra. We study the global homological dimension of the underlying coalgebra structure of H. We show that gl.dim(H) is equal to the injective dimension of the trivial right H-comodule k. We also prove that if D = C x(alpha)H is a crossed coproduct with invertible alpha, then gl.dim(D) less than or equal to gl.dim(C) + gl.dim(H). Some applications of this result are obtained. Moreover, if C is a cocommutative coalgebra such that C* is noetherian, then the global dimension of the coalgebra C coincides with the global dimension of the algebra C*.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 18 条
[1]  
Abe E., 1977, Hopf Algebras
[2]  
Andruskiewitsch N., 1996, ST PETERSB MATH J, V7, P17
[3]  
Caenepeel S., 1994, AN STI U OVID CO-MAT, V2, P44
[4]   Crossed coproducts and cleft coextensions [J].
Dascalescu, S ;
Militaru, G ;
Raianu, S .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (04) :1229-1243
[5]   FINITE HOPF-GALOIS COEXTENSIONS, CROSSED COPRODUCTS, AND DUALITY [J].
DASCALESCU, S ;
RAIANU, S ;
ZHANG, YH .
JOURNAL OF ALGEBRA, 1995, 178 (02) :400-413
[6]  
Dascalescu S., 2000, PURE APPL MATH, V235
[7]  
EILENBERG S, 1966, COMMENT MATH HELV, V40, P199
[8]  
Gabriel, 1962, B SOC MATH FRANCE, V90, P323
[9]   REFLEXIVITY AND COALGEBRAS OF FINITE TYPE [J].
HEYNEMAN, RG ;
RADFORD, DE .
JOURNAL OF ALGEBRA, 1974, 28 (02) :215-246
[10]   EXTENSIONS OF HOPF-ALGEBRAS AND THEIR COHOMOLOGICAL DESCRIPTION [J].
HOFSTETTER, I .
JOURNAL OF ALGEBRA, 1994, 164 (01) :264-298