Conclusive quantum steering with superconducting transition-edge sensors

被引:208
作者
Smith, Devin H. [1 ,2 ,3 ]
Gillett, Geoff [1 ,2 ,3 ]
de Almeida, Marcelo P. [1 ,2 ,3 ]
Branciard, Cyril [3 ]
Fedrizzi, Alessandro [1 ,2 ,3 ]
Weinhold, Till J. [1 ,2 ,3 ]
Lita, Adriana [4 ]
Calkins, Brice [4 ]
Gerrits, Thomas [4 ]
Wiseman, Howard M. [5 ]
Nam, Sae Woo [4 ]
White, Andrew G. [1 ,2 ,3 ]
机构
[1] Univ Queensland, Ctr Engn Quantum Syst, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Ctr Quantum Computat & Commun Technol, Australian Res Council, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[4] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[5] Griffith Univ, Ctr Quantum Computat & Commun Technol, Australian Res Council, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
澳大利亚研究理事会;
关键词
CURRENT SITUATION; BELLS-INEQUALITY; VIOLATION; ENTANGLEMENT;
D O I
10.1038/ncomms1628
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented similar to 62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.
引用
收藏
页数:6
相关论文
共 36 条
[11]   BACKGROUND LEVEL AND COUNTER EFFICIENCIES REQUIRED FOR A LOOPHOLE-FREE EINSTEIN-PODOLSKY-ROSEN EXPERIMENT [J].
EBERHARD, PH .
PHYSICAL REVIEW A, 1993, 47 (02) :R747-R750
[12]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[13]   A wavelength-tunable fiber-coupled source of narrowband entangled photons [J].
Fedrizzi, Alessandro ;
Herbst, Thomas ;
Poppe, Andreas ;
Jennewein, Thomas ;
Zeilinger, Anton .
OPTICS EXPRESS, 2007, 15 (23) :15377-15386
[14]   Full-field implementation of a perfect eavesdropper on a quantum cryptography system [J].
Gerhardt, Ilja ;
Liu, Qin ;
Lamas-Linares, Anta ;
Skaar, Johannes ;
Kurtsiefer, Christian ;
Makarov, Vadim .
NATURE COMMUNICATIONS, 2011, 2
[15]   Spin squeezed atoms: A macroscopic entangled ensemble created by light [J].
Hald, J ;
Sorensen, JL ;
Schori, C ;
Polzik, ES .
PHYSICAL REVIEW LETTERS, 1999, 83 (07) :1319-1322
[16]  
Hecht E., 2016, Optics, V5
[17]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[18]   Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion [J].
Howell, JC ;
Bennink, RS ;
Bentley, SJ ;
Boyd, RW .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :210403-1
[19]   Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer [J].
Kim, T ;
Fiorentino, M ;
Wong, FNC .
PHYSICAL REVIEW A, 2006, 73 (01)
[20]  
Lita AE, 2008, OPT EXPRESS, V16, P3032, DOI 10.1364/OE.16.003032