Understanding the mechanism of interfacial interaction enhancing photodegradation rate of pollutants at molecular level: Intermolecular π-π interactions favor electrons delivery

被引:56
作者
Zhang, Qiang [1 ]
Chen, Juan [1 ]
Gao, Xin [1 ]
Che, Huinan [1 ]
Ao, Yanhui [1 ]
Wang, Peifang [1 ]
机构
[1] Hohai Univ, Coll Environm, Key Lab Integrated Regulat & Resource Dev Shallow, Minist Educ, 1 Xikang Rd, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
pi-pi interactions; Interface interaction; Structure-function relationship; Molecular level; GRAPHITIC CARBON NITRIDE; HYDROGEN EVOLUTION; ORBITAL THEORY; NANOSHEETS; PHOTOCATALYSTS; CONSTRUCTION; ANTIBIOTICS; PERFORMANCE; COMPOSITE; TOXICITY;
D O I
10.1016/j.jhazmat.2022.128386
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Uncovering the interaction between photocatalyst and reaction substrate as well as subsequent electron transfer process is critical to achieve high-performance photodegradation of pollutants. Herein, based on the reduced density gradient (RDG) method, we visualize the simulation of the pi-pi interactions between photocatalyst (gC(3)N(4)) and pollutant molecule (flumequine, FLU). Results revealed that pi-pi interactions between g-C3N4 and FLU favor electrons delivery, resulting in enhanced charge separation efficiency and direct hole oxidation of FLU. Moreover, it is found that the charge transfer rate is determined by the valence band (VB) level of g-C3N4 and EHOMO of FLU, of which the deeper VB position of g-C3N4 favors faster charge transfer, leading to further enhancement in photocatalytic degradation rate of FLU. Additionally, the possible degradation pathways of FLU were proposed by theoretical calculation and the determined intermediates. Our work afforded a new insight into pollutants degradation and the rational design of highly efficient photocatalysts.
引用
收藏
页数:12
相关论文
共 63 条
[1]   Carbamazepine degradation by UV and UV-assisted AOPs: Kinetics, mechanism and toxicity investigations [J].
Ali, Fayaz ;
Khan, Javed Ali ;
Shah, Noor S. ;
Sayed, Murtaza ;
Khan, Hasan M. .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2018, 117 :307-314
[2]   PHOTOELECTROLYSIS AND PHYSICAL-PROPERTIES OF SEMICONDUCTING ELECTRODE WO3 [J].
BUTLER, MA .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :1914-1920
[3]   Peroxymonosulfate activation of magnetic Co nanoparticles relative to an N-doped porous carbon under confinement: Boosting stability and performance [J].
Cao, Jiao ;
Yang, Zhaohui ;
Xiong, Weiping ;
Zhou, Yaoyu ;
Wu, You ;
Jia, Meiying ;
Sun, Saiwu ;
Zhou, Chengyun ;
Zhang, Yanru ;
Zhong, Renhua .
SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 250
[4]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[5]   Iodide-Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for High-Performance Quasi-Homogeneous Photocatalytic H2O2 Production [J].
Che, Huinan ;
Gao, Xin ;
Chen, Juan ;
Hou, Jun ;
Ao, Yanhui ;
Wang, Peifang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (48) :25546-25550
[6]   Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3- toward improving photocatalytic performance [J].
Che, Huinan ;
Liu, Lihui ;
Che, Guangbo ;
Dong, Hongjun ;
Liu, Chunbo ;
Li, Chunmei .
CHEMICAL ENGINEERING JOURNAL, 2019, 357 :209-219
[7]   Fluoroquinolone Antibacterial Agent Contaminants in Soil/Groundwater: A Literature Review of Sources, Fate, and Occurrence [J].
Chen, Guoli ;
Li, Miao ;
Liu, Xiang .
WATER AIR AND SOIL POLLUTION, 2015, 226 (12)
[8]   Cascaded electron transition in CuWO4/CdS/CDs heterostructure accelerating charge separation towards enhanced photocatalytic activity [J].
Chen, Yibo ;
Li, Jing-Feng ;
Liao, Pei-Yu ;
Zeng, Ying-Shan ;
Wang, Zhu ;
Liu, Zhao-Qing .
CHINESE CHEMICAL LETTERS, 2020, 31 (06) :1516-1519
[9]   Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation [J].
Di, Jun ;
Xia, Jiexiang ;
Li, Xiaowei ;
Ji, Mengxia ;
Xu, Hui ;
Chen, Zhigang ;
Li, Huaming .
CARBON, 2016, 107 :1-10
[10]   Synthesis of Z-scheme g-C3N4 nanosheets/Ag3PO4 photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye [J].
Ding, Meng ;
Zhou, Juanjuan ;
Yang, Hongcen ;
Cao, Ruya ;
Zhang, Shouwei ;
Shao, Minghui ;
Xu, Xijin .
CHINESE CHEMICAL LETTERS, 2020, 31 (01) :71-76