Anharmonicity of Lattice Vibrations and the Thermal Properties of Cd1- xSrxF2 Solid Solutions

被引:2
|
作者
Novikov, V. V. [1 ]
Mitroshenkov, N. V. [1 ]
Kuznetsov, S. V. [1 ]
Popov, P. A. [1 ]
Buchinskaya, I. I. [2 ]
Karimov, D. N. [2 ]
Koshelev, A. V. [2 ]
机构
[1] Petrovskii Bryansk State Univ, Bryansk 241036, Russia
[2] Russian Acad Sci, Crystallog & Photon Fed Res Ctr, Shubnikov Inst Crystallog, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
solid solutions; lattice parameters; low temperatures; thermal expansion; thermal conductivity; RARE-EARTH-ELEMENTS; CRYSTAL-GROWTH; CONDUCTIVITY; FLUORIDE; EXPANSION;
D O I
10.1134/S1063783420040174
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The temperature changes in the crystal lattice parameters a(T) of cadmium and strontium fluorides and also of their mutual Cd1 - xSrxF2 (x = 0.23, 0.50) solid solutions has been studied experimentally at temperatures 5-300 K. The temperature dependences of the unit cell volume of these fluorides are analyzed in the Debye-Einstein model. The lattice vibration anharmonicity of the solutions is found to substantially influence their thermal properties due to a disordering of their crystal structure. The model parameters and the characteristics of the anharmonic contribution have been determined. The results are used to calculate the concentration dependence of the thermal conductivity of the Cd1 - xSrxF2 solid solutions at T = 300 K in the Callaway model, and the calculation results are compared to the available experimental data. It is shown that the thermal conductivity of the single-crystal solid solution of the system under study can be estimated on the base of the data on the thermal properties of the solution components obtained from powder samples.
引用
收藏
页码:714 / 721
页数:8
相关论文
共 50 条
  • [31] High temperature mechanical and thermal properties of CaxBa1-xZrO3 solid solutions
    Zhang, Wei
    Zhao, Juanli
    Wang, Peiying
    Liu, Yuchen
    Song, Peng
    Jiang, Danyu
    Li, Wenxian
    Zhou, Yanchun
    Yang, Lan
    Nian, Hongqiang
    Liu, Bin
    CERAMICS INTERNATIONAL, 2020, 46 (11) : 17416 - 17422
  • [32] Electrochemical Growth, Optical Absorption Spectra, and Luminescence Properties of Films of Cd1 –xZnxS (0 < x ≤ 0.042) Solid Solutions
    I. V. Demidenko
    V. M. Ishimov
    I. N. Odin
    V. G. Surinov
    M. V. Chukichev
    Inorganic Materials, 2021, 57 : 992 - 997
  • [33] Theoretical study of mechanical, thermal and optical properties of (Ti1-xNbx)3AlC2 solid solutions
    Jiao, Zhao-Yong
    Ma, Shu-Hong
    Guo, Yong-Liang
    EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (06)
  • [34] Thermal expansion and thermal conductivity of single-crystal CuxAg1-xInS2 solid solutions grown by the moving solvent method
    Bodnar, IV
    Yasyukevich, LV
    TECHNICAL PHYSICS, 2005, 50 (09) : 1178 - 1181
  • [35] Thermoelectric Transport Properties of TmAgxCu1-xTe2 solid solutions
    Bai, Qingyu
    Zhang, Xinyue
    Shan, Bing
    Shi, Xuemin
    Sun, Cheng
    Lin, Siqi
    Li, Wen
    Pei, Yanzhong
    JOURNAL OF MATERIOMICS, 2021, 7 (04) : 886 - 893
  • [36] Insights into the thermoelectric properties of the Cu2Ge(S1-xSex)3 solid solutions
    Jacob, Stephane
    Delatouche, Bruno
    Pere, Daniel
    Jacob, Alain
    Chmielowski, Radoslaw
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (12) : 12349 - 12359
  • [37] Abnormal thermal expansion and thermal stability of Ti3Al1-xSixC2 solid solutions
    Chen, J. X.
    Zhou, Y. C.
    Zhang, J.
    SCRIPTA MATERIALIA, 2006, 55 (08) : 675 - 678
  • [38] Structures, and Thermophysical Properties Characterizations of (La1-xHox)3NbO7 Solid Solutions as Thermal Barrier Coatings
    Chen, Lin
    Wang, Yitao
    Zheng, Qi
    Feng, Jing
    FRONTIERS IN MATERIALS, 2021, 8
  • [39] Thermal expansion and thermal conductivity of single-crystal CuxAg1−xInS2 solid solutions grown by the moving solvent method
    I. V. Bodnar
    L. V. Yasyukevich
    Technical Physics, 2005, 50 : 1178 - 1181
  • [40] Real structure and thermal properties of solid solutions of γ-GdxDy1−xS1.5−y
    V. V. Bakovets
    A. V. Sotnikov
    A. Sh. Agazhanov
    S. V. Stankus
    Thermophysics and Aeromechanics, 2020, 27 : 439 - 448