Model-Free Safety-Critical Control for Robotic Systems

被引:53
|
作者
Molnar, Tamas G. [1 ,2 ]
K. Cosner, Ryan [1 ,2 ]
W. Singletary, Andrew [1 ,2 ]
Ubellacker, Wyatt [1 ,2 ]
D. Ames, Aaron [1 ,2 ]
机构
[1] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA
[2] CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Dynamics; motion control; robot safety; CONTROL BARRIER FUNCTIONS; INPUT;
D O I
10.1109/LRA.2021.3135569
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter presents a framework for the safety-critical control of robotic systems, when safety is defined on safe regions in the configuration space. To maintain safety, we synthesize a safe velocity based on control barrier function theory without relying on a - potentially complicated - high-fidelity dynamical model of the robot. Then, we track the safe velocity with a tracking controller. This culminates in model-free safety critical control. We prove theoretical safety guarantees for the proposed method. Finally, we demonstrate that this approach is application-agnostic. We execute an obstacle avoidance task with a Segway in high-fidelity simulation, as well as with a Drone and a Quadruped in hardware experiments.
引用
收藏
页码:944 / 951
页数:8
相关论文
共 50 条
  • [31] Suboptimal Safety-Critical Control for Continuous Systems Using Prediction-Correction Online Optimization
    Wang, Shengbo
    Wen, Shiping
    Yang, Yin
    Cao, Yuting
    Shi, Kaibo
    Huang, Tingwen
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (07): : 4091 - 4101
  • [32] Safety-Critical Control for Nonholonomic Tractor-Trailer Systems Using Control Barrier Functions and Differential Flatness
    Cai, Yuyang
    Wang, Gang
    Zuo, Zongyu
    Ji, Yunfeng
    Li, Peng
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 864 - 869
  • [33] Safety-Aware Preference-Based Learning for Safety-Critical Control
    Cosner, Ryan K.
    Tucker, Maegan
    Taylor, Andrew J.
    Li, Kejun
    Molnar, Tamas G.
    Ubellacker, Wyatt
    Alan, Anil
    Orosz, Gabor
    Yue, Yisong
    Ames, Aaron D.
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [34] Model-Free Output Consensus Control for Partially Observable Heterogeneous Multivehicle Systems
    Sun, Yipu
    Chen, Xin
    Wang, Wei
    Fu, Hao
    Wu, Min
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08) : 7135 - 7147
  • [35] Model-free development of control systems for a multi-degree-of-freedom robot
    Zheng Kunming
    Hu Youmin
    Wu Bo
    MECHATRONICS, 2018, 53 : 262 - 276
  • [36] Passivity-Preserving Safety-Critical Control Using Control Barrier Functions
    Califano, Federico
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1742 - 1747
  • [37] Robust Adaptive Safety-Critical Control for Unknown Systems With Finite-Time Elementwise Parameter Estimation
    Wang, Shengbo
    Lyu, Bo
    Wen, Shiping
    Shi, Kaibo
    Zhu, Song
    Huang, Tingwen
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (03): : 1607 - 1617
  • [38] Model-Free Quantum Control with Reinforcement Learning
    Sivak, V. V.
    Eickbusch, A.
    Liu, H.
    Royer, B.
    Tsioutsios, I
    Devoret, M. H.
    PHYSICAL REVIEW X, 2022, 12 (01)
  • [39] Safety-Critical Control Synthesis for Systems with Unknown Nonlinear Dynamics: An Adaptive Recurrent Neural Network Approach
    Mustafa, Aquib
    Chong, Jonathan
    2024 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS, CCTA 2024, 2024, : 85 - 92
  • [40] Model-Free Optimized Tracking Control Heuristic
    Wang, Ning
    Abouheaf, Mohammed
    Gueaieb, Wail
    Nahas, Nabil
    ROBOTICS, 2020, 9 (03)