Existence of weak solutions to the three-dimensional steady compressible Navier-Stokes equations

被引:31
作者
Jiang, Song [1 ]
Zhou, Chunhui [1 ]
机构
[1] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2011年 / 28卷 / 04期
关键词
Steady compressible Navier-Stokes equations; Existence for gamma > 1; Potential estimate; Effective viscous flux;
D O I
10.1016/j.anihpc.2011.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a spatially periodic weak solution to the steady compressible isentropic Navier-Stokes equations in R-3 for any specific heat ratio gamma > I. The proof is based on the weighted estimates of both pressure and kinetic energy for the approximate system which result in some higher integrability of the density. and the method of weak convergence. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:485 / 498
页数:14
相关论文
共 16 条
[1]  
BOGOVSKII ME, 1979, DOKL AKAD NAUK SSSR+, V248, P1037
[2]  
Brezina J, 2008, COMMENT MATH UNIV CA, V49, P611
[3]  
Feireisl E., 2001, Comment. Math. Univ. Carol, V42, P83
[4]  
FEIREISL E., 2003, DYNAMICS VISCOUS COM
[5]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[6]   Lp-estimates for the Navier-Stokes equations for steady compressible flow [J].
Frehse, J ;
Goj, S ;
Steinhauer, M .
MANUSCRIPTA MATHEMATICA, 2005, 116 (03) :265-275
[7]   The Dirichlet problem for steady viscous compressible flow in three dimensions [J].
Frehse, J. ;
Steinhauer, M. ;
Weigant, W. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (02) :85-97
[8]   On Stationary Solutions for 2-D Viscous Compressible Isothermal Navier-Stokes Equations [J].
Frehse, J. ;
Steinhauer, M. ;
Weigant, W. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (01) :55-63
[9]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[10]   Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids [J].
Jiang, S ;
Zhang, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08) :949-973