Monotonicity of the eigenvalues of the two-particle Schrodinger operatoron a lattice

被引:1
|
作者
Abdullaev, J., I [1 ,2 ]
Khalkhuzhaev, A. M. [1 ,2 ]
Usmonov, L. S. [2 ]
机构
[1] Acad Sci Uzbek, Inst Math, Mirzo Ulugbek 81, Tashkent 100170, Uzbekistan
[2] Samarkand State Univ, Univ Blvd 15, Samarkand 140104, Uzbekistan
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2021年 / 12卷 / 06期
关键词
two-particle Schrodinger operator; Birman-Schwinger principle; total quasimomentum; monotonicity of the eigenvalues; BOUND-STATES; SYSTEM;
D O I
10.17586/2220-8054-2021-12-6-657-663
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We consider the two-particle Schrodinger operator H (k), (k is an element of T-3 (-pi, pi](3) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice Z(3). It is proved that the number N (k) N (k((1)), k((2)), k((3))) of eigenvalues below the essential spectrum of the operator H (k) is nondecreasing function in each k((i)) is an element of [0, pi], i = 1, 2, 3. Under some additional conditions potential (v) over cap, the monotonicity of each eigenvalue z(n) (k) z(n)(k((1)), k((2)), k((3))) of the operator H (k) in k((i)) is an element of [0, pi] with other coordinates k being fixed is proved.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 50 条
  • [41] Window-coupled nanolayers: window shape influence on one-particle and two-particle eigenstates
    Bagmutov, A. S.
    Popov, I. Y.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2020, 11 (06): : 636 - 641
  • [42] Universality of the discrete spectrum asymptotics of the three-particle Schrodinger operator on a lattice
    Muminov, Mukhiddin I.
    Rasulov, Tulkin H.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (02): : 280 - 293
  • [43] Spectrum of the three-particle Schrodinger operator on a one-dimensional lattice
    Muminov, M. E.
    Aliev, N. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (03) : 754 - 768
  • [44] Two-particle excited states entanglement entropy in a one-dimensional ring
    Berkovits, Richard
    PHYSICAL REVIEW B, 2013, 87 (07):
  • [45] Two-particle coined-quantum walk with long-range interaction
    Alonso-Lobo, Cesar
    Martinez-Quesada, Manuel
    Hinarejos, Margarida
    de Valcarcel, German J.
    Roldan, Eugenio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (45)
  • [46] The Effective Two-Particle Interaction of Cold Atoms as Derived from Bragg Scattering
    Sarjonen, R.
    Saarela, M.
    Mazzanti, F.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 169 (5-6) : 400 - 422
  • [47] The Number and Location of Eigenvalues of the Two Particle Discrete Schrödinger Operators
    I. N. Bozorov
    Sh. I. Khamidov
    S. N. Lakaev
    Lobachevskii Journal of Mathematics, 2022, 43 : 3079 - 3090
  • [48] Two- and three-particle systems in relativistic Schrodinger theory
    Beck, T.
    Sorg, M.
    FOUNDATIONS OF PHYSICS, 2007, 37 (07) : 1093 - 1147
  • [49] The Spectrum of Two-Particle Bound States for the Transfer Matrices of Gibbs Fields (an Isolated Bound State)
    E. L. Lakshtanov
    R. A. Minlos
    Functional Analysis and Its Applications, 2004, 38 : 202 - 216
  • [50] The spectrum of two-particle bound states for the transfer matrices of Gibbs fields (an isolated bound state)
    Lakshtanov, EL
    Minlos, RA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2004, 38 (03) : 202 - 216