Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias

被引:38
作者
Sun, Li [1 ,2 ]
Sun, Wen [1 ]
You, Fengqi [2 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
[2] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Core temperature; Extended Unscented Kalman filter; THERMAL MANAGEMENT-SYSTEM; OF-CHARGE ESTIMATION; RATIO CONTROL; STATE; POWER; PERFORMANCE; SOC;
D O I
10.1016/j.apenergy.2020.115243
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium-ion battery is now considered as an enabling technology for modern civilization and sustainability, initiating wireless revolution and efficient energy storage. In spite of the significant progress made in materials and manufacturing, the growing awareness on the operational safety and reliability requires more efficient battery management systems. Core temperature, an underlying variable for battery management, is unfortunately unmeasurable and has to be online estimated via other measurable variables. The core temperature monitoring becomes even more challenging when the measurable variables encounter sensor bias as well as model inaccuracy and sensor noise. To this end, this paper improves the thermal model accuracy by introducing a radiation term into the conventional linear lumped model. The unknown parameters of the new nonlinear model are identified based on multi-objective optimization, of which the results confirm the superiority of the proposed nonlinear model. The sensor bias is treated as an extended state to be estimated together with other states. An extended unscented Kalman filter is accordingly developed to handle the nonlinearity, measurement noise and sensor bias. Both simulation and experimental results are given to demonstrate the efficacy of the proposed method, showing that the core temperature can be accurately estimated in spite of the sensor biases in the surface temperature or electric current measurements.
引用
收藏
页数:13
相关论文
共 52 条
[1]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[2]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[3]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[4]   On the conceptualization of total disturbance and its profound implications [J].
Chen, Sen ;
Bai, Wenyan ;
Hu, Yu ;
Huang, Yi ;
Gao, Zhiqiang .
SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (02)
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]  
Dey S, 2017, IEEE T CONTR SYST T, V27, P576
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Improved Battery SOC Estimation Accuracy Using a Modified UKF With an Adaptive Cell Model Under Real EV Operating Conditions [J].
El Din, Menatalla Shehab ;
Hussein, Ala A. ;
Abdel-Hafez, Mamoun F. .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2018, 4 (02) :408-417
[9]   A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries [J].
Farmann, Alexander ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2017, 347 :1-13
[10]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176