Graph Representation Learning-Based Early Depression Detection Framework in Smart Home Environments

被引:4
|
作者
Kim, Jongmo [1 ]
Sohn, Mye [1 ]
机构
[1] Sungkyunkwan Univ, Dept Ind Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
smart home; early detection of depression (EDD); elderly; graph neural networks; graph representation learning; knowledge graph; HEAD POSE ESTIMATION; KNOWLEDGE GRAPH; NEURAL-NETWORK; ATTENTION;
D O I
10.3390/s22041545
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Although the diagnosis and treatment of depression is a medical field, ICTs and AI technologies are used widely to detect depression earlier in the elderly. These technologies are used to identify behavioral changes in the physical world or sentiment changes in cyberspace, known as symptoms of depression. However, although sentiment and physical changes, which are signs of depression in the elderly, are usually revealed simultaneously, there is no research on them at the same time. To solve the problem, this paper proposes knowledge graph-based cyber-physical view (CPV)-based activity pattern recognition for the early detection of depression, also known as KARE. In the KARE framework, the knowledge graph (KG) plays key roles in providing cross-domain knowledge as well as resolving issues of grammatical and semantic heterogeneity required in order to integrate cyberspace and the physical world. In addition, it can flexibly express the patterns of different activities for each elderly. To achieve this, the KARE framework implements a set of new machine learning techniques. The first is 1D-CNN for attribute representation in relation to learning to connect the attributes of physical and cyber worlds and the KG. The second is the entity alignment with embedding vectors extracted by the CNN and GNN. The third is a graph extraction method to construct the CPV from KG with the graph representation learning and wrapper-based feature selection in the unsupervised manner. The last one is a method of activity-pattern graph representation based on a Gaussian Mixture Model and KL divergence for training the GAT model to detect depression early. To demonstrate the superiority of the KARE framework, we performed the experiments using real-world datasets with five state-of-the-art models in knowledge graph entity alignment.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Early Rumor Detection Method Based on Knowledge Graph Representation Learning
    Pi D.-C.
    Wu Z.-Y.
    Cao J.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (02): : 385 - 395
  • [2] Graph Representation Learning In A Contrastive Framework For Community Detection
    Balouchi, Mehdi
    Ahmadi, Ali
    2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [3] Knowledge Graph Representation Learning-Based Forest Fire Prediction
    Chen, Jiahui
    Yang, Yi
    Peng, Ling
    Chen, Luanjie
    Ge, Xingtong
    REMOTE SENSING, 2022, 14 (17)
  • [4] A Knowledge Graph-Based Framework for Smart Home Device Action Recommendation and Demand Response
    Chen, Wenzhi
    Sun, Hongjian
    You, Minglei
    Jiang, Jing
    Rivera, Marco
    ENERGIES, 2025, 18 (04)
  • [5] A framework for brain learning-based control of smart structures
    Rahmani, Hamid Radmard
    Chase, Geoffrey
    Wiering, Marco
    Koenkea, Carsten
    ADVANCED ENGINEERING INFORMATICS, 2019, 42
  • [6] UniSKGRep: A unified representation learning framework of social network and knowledge graph
    Shen, Yinghan
    Jiang, Xuhui
    Li, Zijian
    Wang, Yuanzhuo
    Xu, Chengjin
    Shen, Huawei
    Cheng, Xueqi
    NEURAL NETWORKS, 2023, 158 : 142 - 153
  • [7] Heterogeneous Information Network Representation Learning Framework Based on Graph Attention Network
    Kang Shize
    Ji Lixin
    Zhang Jianpeng
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (04) : 915 - 922
  • [8] Vulnerability Detection Based on Enhanced Graph Representation Learning
    Xiao, Peng
    Xiao, Qibin
    Zhang, Xusheng
    Wu, Yumei
    Yang, Fengyu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5120 - 5135
  • [9] A Survey on Malware Detection with Graph Representation Learning
    Bilot, Tristan
    El Madhoun, Nour
    Al Agha, Khaldoun
    Zouaoui, Anis
    ACM COMPUTING SURVEYS, 2024, 56 (11)
  • [10] A privacy-preserving distributed energy management framework based on vertical federated learning-based smart data cleaning for smart home electricity data
    Lin, Yu-Hsiu
    Ciou, Jian-Cheng
    INTERNET OF THINGS, 2024, 26