Functional renormalization group approach to the Yang - Lee edge singularity

被引:21
|
作者
An, X. [1 ]
Mesterhazy, D. [2 ]
Stephanov, M. A. [1 ]
机构
[1] Univ Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA
[2] Univ Bern, Albert Einstein Ctr Fundamental Phys, Sidlerstr 5, CH-3012 Bern, Switzerland
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2016年 / 07期
基金
欧洲研究理事会;
关键词
Field Theories in Higher Dimensions; Renormalization Group; Nonperturbative Effects; CRITICAL EXPONENTS; PARTITION-FUNCTION; FIELD-THEORY; ISING-MODEL; DERIVATIVE EXPANSION; PERCOLATION PROBLEM; AVERAGE ACTION; ZEROS; DENSITY; DIMENSIONS;
D O I
10.1007/JHEP07(2016)041
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We determine the scaling properties of the Yang-Lee edge singularity as described by a one-component scalar field theory with imaginary cubic coupling, using the nonperturbative functional renormalization group in 3 <= d <= 6 Euclidean dimensions. We find very good agreement with high-temperature series data in d = 3 dimensions and compare our results to recent estimates of critical exponents obtained with the four-loop epsilon = 6 - d expansion and the conformal bootstrap. The relevance of operator insertions at the corresponding fixed point of the RG beta functions is discussed and we estimate the error associated with O(partial derivative(4)) truncations of the scale-dependent effective action.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Functional renormalization group approach to the Yang-Lee edge singularity
    X. An
    D. Mesterházy
    M. A. Stephanov
    Journal of High Energy Physics, 2016
  • [2] THE YANG-LEE EDGE SINGULARITY BY THE PHENOMENOLOGICAL RENORMALIZATION-GROUP
    UZELAC, K
    JULLIEN, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05): : L151 - L155
  • [3] LEE-YANG EDGE SINGULARITY AND THE SCALING OF RENORMALIZATION-GROUP TRAJECTORIES
    KOCIC, A
    PHYSICS LETTERS B, 1992, 281 (3-4) : 309 - 314
  • [4] YANG-LEE EDGE SINGULARITY FROM A REAL-SPACE RENORMALIZATION-GROUP METHOD
    UZELAC, K
    PFEUTY, P
    JULLIEN, R
    PHYSICAL REVIEW LETTERS, 1979, 43 (12) : 805 - 808
  • [5] Lee-Yang model from the functional renormalization group
    Zambelli, Luca
    Zanusso, Omar
    PHYSICAL REVIEW D, 2017, 95 (08)
  • [6] Fermi-edge singularity and the functional renormalization group
    Kugler, Fabian B.
    von Delft, Jan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (19)
  • [7] REAL-SPACE RENORMALIZATION-GROUP METHOD FOR QUANTUM-SYSTEMS - YANG-LEE EDGE SINGULARITY
    UZELAC, K
    JULLIEN, R
    PFEUTY, P
    PENSON, KA
    JOURNAL OF APPLIED PHYSICS, 1979, 50 (11) : 7377 - 7378
  • [8] Multicriticality in Yang-Lee edge singularity
    Lencses, Mate
    Miscioscia, Alessio
    Mussardo, Giuseppe
    Takacs, Gabor
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [9] YANG-LEE SINGULARITY AND THE MOBILITY EDGE
    KAPITULNIK, A
    SHAPIR, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (07): : L243 - L248
  • [10] YANG-LEE EDGE SINGULARITY ON FRACTALS
    KNEZEVIC, M
    SOUTHERN, BW
    PHYSICAL REVIEW B, 1986, 34 (07): : 4966 - 4968