FRACTIONAL CALCULUS OF VARIATIONS FOR A COMBINED CAPUTO DERIVATIVE

被引:60
作者
Malinowska, Agnieszka B. [1 ]
Torres, Delfim F. M. [2 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[2] Univ Aveiro, Dept Math, Ctr Res & Dev Math, P-3810193 Aveiro, Portugal
关键词
fractional derivatives; Caputo derivatives; fractional variational principles; Euler-Lagrange equations; isoperimetric constraints; transversality conditions; NATURAL BOUNDARY-CONDITIONS; EULER-LAGRANGE EQUATIONS; HAMILTON FORMALISM; CONSERVATION-LAWS; FORMULATION; TERMS; MECHANICS; INTEGRALS; ALPHA;
D O I
10.2478/s13540-011-0032-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the fractional Caputo derivative to the fractional derivative (C)D(gamma)(alpha,beta), which is a convex combination of the left Caputo fractional derivative of order a and the right Caputo fractional derivative of order beta. The fractional variational problems under our consideration are formulated in terms of (C)D(gamma)(alpha,beta). The Euler-Lagrange equations for the basic and isoperimetric problems, as well as transversality conditions, are proved.
引用
收藏
页码:523 / 537
页数:15
相关论文
共 45 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   Generalized Euler-Lagrange equations and mransversality conditions for FVPs in terms of the caputo derivative [J].
Agrawal, Om P. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1217-1237
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]   Fractional variational calculus for nondifferentiable functions [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (10) :3097-3104
[5]   Leitmann's direct method for fractional optimization problems [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (03) :956-962
[6]   A fractional calculus of variations for multiple integrals with application to vibrating string [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[7]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[8]  
Ammi MRS, 2008, J INEQUAL APPL, DOI 10.1155/2008/576876
[9]  
[Anonymous], 2006, THEORY APPL FRACTION
[10]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics