IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks

被引:11
作者
Wang, Xun [1 ]
Zhang, Chaogang [1 ]
Zhang, Ying [1 ]
Meng, Xiangyu [1 ]
Zhang, Zhiyuan [1 ]
Shi, Xin [1 ]
Song, Tao [1 ,2 ]
机构
[1] China Univ Petr, Coll Comp Sci & Technol, Qingdao 266555, Peoples R China
[2] Politecn Univ Madrid, Fac Comp Sci, Dept Artificial Intelligence, Campus Montegancedo, Madrid 28660, Spain
基金
中国国家自然科学基金;
关键词
scRNA-seq; batch effect; connected graphs; deep learning; GAN; ATLAS;
D O I
10.3390/ijms23042082
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is a strong need to eliminate batch-specific differences when integrating single-cell RNA-sequencing (scRNA-seq) datasets generated under different experimental conditions for downstream task analysis. Existing batch correction methods usually transform different batches of cells into one preselected "anchor" batch or a low-dimensional embedding space, and cannot take full advantage of useful information from multiple sources. We present a novel framework, called IMGG, i.e., integrating multiple single-cell datasets through connected graphs and generative adversarial networks (GAN) to eliminate nonbiological differences between different batches. Compared with current methods, IMGG shows excellent performance on a variety of evaluation metrics, and the IMGG-corrected gene expression data incorporate features from multiple batches, allowing for downstream tasks such as differential gene expression analysis.
引用
收藏
页数:21
相关论文
共 29 条
[11]  
Kingma DP, 2014, ADV NEUR IN, V27
[12]   Fast, sensitive and accurate integration of single-cell data with Harmony [J].
Korsunsky, Ilya ;
Millard, Nghia ;
Fan, Jean ;
Slowikowski, Kamil ;
Zhang, Fan ;
Wei, Kevin ;
Baglaenko, Yuriy ;
Brenner, Michael ;
Loh, Po-ru ;
Raychaudhuri, Soumya .
NATURE METHODS, 2019, 16 (12) :1289-+
[13]   Single-cell transcriptomes identify human islet cell signatures and reveal cell-type specific expression changes in type 2 diabetes [J].
Lawlor, Nathan ;
George, Joshy ;
Bolisetty, Mohan ;
Kursawe, Romy ;
Sun, Lili ;
Sivakamasundari, V. ;
Kycia, Ina ;
Robson, Paul ;
Stitzel, Michael L. .
GENOME RESEARCH, 2017, 27 (02) :208-222
[14]   Tackling the widespread and critical impact of batch effects in high-throughput data [J].
Leek, Jeffrey T. ;
Scharpf, Robert B. ;
Bravo, Hector Corrada ;
Simcha, David ;
Langmead, Benjamin ;
Johnson, W. Evan ;
Geman, Donald ;
Baggerly, Keith ;
Irizarry, Rafael A. .
NATURE REVIEWS GENETICS, 2010, 11 (10) :733-739
[15]   Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis [J].
Li, Xiangjie ;
Wang, Kui ;
Lyu, Yafei ;
Pan, Huize ;
Zhang, Jingxiao ;
Stambolian, Dwight ;
Susztak, Katalin ;
Reilly, Muredach P. ;
Hu, Gang ;
Li, Mingyao .
NATURE COMMUNICATIONS, 2020, 11 (01)
[16]  
McInnes L., 2018, J OPEN SOURCE SOFTW, V3, P861, DOI [DOI 10.21105/JOSS.00861, 10.21105/joss.00861]
[17]  
Misra D., 2020, BRIT MACH VIS C, DOI DOI 10.48550/ARXIV.1908.08681
[18]   A Single-Cell Transcriptome Atlas of the Human Pancreas [J].
Muraro, Mauro J. ;
Dharmadhikari, Gitanjali ;
Gruen, Dominic ;
Groen, Nathalie ;
Dielen, Tim ;
Jansen, Erik ;
van Gurp, Leon ;
Engelse, Marten A. ;
Carlotti, Francoise ;
de Koning, Eelco J. P. ;
van Oudenaarden, Alexander .
CELL SYSTEMS, 2016, 3 (04) :385-+
[19]   BBKNN: fast batch alignment of single cell transcriptomes [J].
Polanski, Krzysztof ;
Young, Matthew D. ;
Miao, Zhichao ;
Meyer, Kerstin B. ;
Teichmann, Sarah A. ;
Park, Jong-Eun .
BIOINFORMATICS, 2020, 36 (03) :964-965
[20]   SILHOUETTES - A GRAPHICAL AID TO THE INTERPRETATION AND VALIDATION OF CLUSTER-ANALYSIS [J].
ROUSSEEUW, PJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 20 :53-65