IMGG: Integrating Multiple Single-Cell Datasets through Connected Graphs and Generative Adversarial Networks

被引:11
作者
Wang, Xun [1 ]
Zhang, Chaogang [1 ]
Zhang, Ying [1 ]
Meng, Xiangyu [1 ]
Zhang, Zhiyuan [1 ]
Shi, Xin [1 ]
Song, Tao [1 ,2 ]
机构
[1] China Univ Petr, Coll Comp Sci & Technol, Qingdao 266555, Peoples R China
[2] Politecn Univ Madrid, Fac Comp Sci, Dept Artificial Intelligence, Campus Montegancedo, Madrid 28660, Spain
基金
中国国家自然科学基金;
关键词
scRNA-seq; batch effect; connected graphs; deep learning; GAN; ATLAS;
D O I
10.3390/ijms23042082
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
There is a strong need to eliminate batch-specific differences when integrating single-cell RNA-sequencing (scRNA-seq) datasets generated under different experimental conditions for downstream task analysis. Existing batch correction methods usually transform different batches of cells into one preselected "anchor" batch or a low-dimensional embedding space, and cannot take full advantage of useful information from multiple sources. We present a novel framework, called IMGG, i.e., integrating multiple single-cell datasets through connected graphs and generative adversarial networks (GAN) to eliminate nonbiological differences between different batches. Compared with current methods, IMGG shows excellent performance on a variety of evaluation metrics, and the IMGG-corrected gene expression data incorporate features from multiple batches, allowing for downstream tasks such as differential gene expression analysis.
引用
收藏
页数:21
相关论文
共 29 条
[1]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[2]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[3]   De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data [J].
Grun, Dominic ;
Muraro, Mauro J. ;
Boisset, Jean-Charles ;
Wiebrands, Kay ;
Lyubimova, Anna ;
Dharmadhikari, Gitanjali ;
van den Born, Maaike ;
van Es, Johan ;
Jansen, Erik ;
Clevers, Hans ;
de Koning, Eelco J. P. ;
van Oudenaarden, Alexander .
CELL STEM CELL, 2016, 19 (02) :266-277
[4]   Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors [J].
Haghverdi, Laleh ;
Lun, Aaron T. L. ;
Morgan, Michael D. ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :421-+
[5]   Missing data and technical variability in single-cell RNA-sequencing experiments [J].
Hicks, Stephanie C. ;
Townes, F. William ;
Teng, Mingxiang ;
Irizarry, Rafael A. .
BIOSTATISTICS, 2018, 19 (04) :562-578
[6]   Efficient integration of heterogeneous single-cell transcriptomes using Scanorama [J].
Hie, Brian ;
Bryson, Bryan ;
Berger, Bonnie .
NATURE BIOTECHNOLOGY, 2019, 37 (06) :685-+
[7]   A benchmark of batch-effect correction methods for single-cell RNA sequencing data [J].
Hoa Thi Nhu Tran ;
Ang, Kok Siong ;
Chevrier, Marion ;
Zhang, Xiaomeng ;
Lee, Nicole Yee Shin ;
Goh, Michelle ;
Chen, Jinmiao .
GENOME BIOLOGY, 2020, 21 (01)
[8]   The Human Cell Atlas: Technical approaches and challenges [J].
Hon, Chung-Chau ;
Shin, Jay W. ;
Carninci, Piero ;
Stubbington, Michael J. T. .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) :283-294
[9]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218
[10]  
Gulrajani I, 2017, ADV NEUR IN, V30