VARIATIONAL PRINCIPLES FOR SELF-ADJOINT OPERATOR FUNCTIONS ARISING FROM SECOND-ORDER SYSTEMS

被引:0
作者
Jacob, Birgit [1 ]
Langer, Matthias [2 ]
Trunk, Carsten [3 ]
机构
[1] Berg Univ Wuppertal, Arbeitsgrp Funkt Anal, Fak Math & Nat Wissensch, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[3] Tech Univ Ilmenau, Inst Math, Postfach 100565, D-98684 Ilmenau, Germany
来源
OPERATORS AND MATRICES | 2016年 / 10卷 / 03期
关键词
Block operator matrices; variational principle; operator function; second-order equations; spectrum; essential spectrum; sectorial form; POSED LINEAR-SYSTEM; THIN AIR; EIGENVALUES; EQUATIONS; STABILITY; MATRICES; SPECTRUM;
D O I
10.7153/oam-10-29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Variational principles are proved for self-adjoint operator functions arising from variational evolution equations of the form <(z) over dot(t), y > vertical bar partial derivative[(z) over dot(t), y] vertical bar a(0)[z(t), y] = 0. Here a(0) and partial derivative are densely defined, symmetric and positive sesquilinear forms on a Hilbert space H. We associate with the variational evolution equation an equivalent Cauchy problem corresponding to a block operator matrix A, the forms t(lambda)[x, y] := lambda(2)< x, y > +lambda partial derivative[x, y] + a(0) [x, y], where lambda is an element of C and x, y are in the domain of the form a(0), and a corresponding operator family T(lambda). Using form methods we define a generalized Rayleigh functional and characterize the eigenvalues above the essential spectrum of A by a min-max and a max-min variational principle. The obtained results are illustrated with a damped beam equation.
引用
收藏
页码:501 / 531
页数:31
相关论文
共 21 条
[1]  
Azizov TY., 1989, Linear operators in spaces with and indefinite metric
[2]  
Banks H.T., 1995, Differential and Integral Equations, P587
[3]  
BANKS HT, 1988, CONTR-THEOR ADV TECH, V4, P73
[4]   Variational principles for real eigenvalues of self-adjoint operator pencils [J].
Binding, P ;
Eschwé, D ;
Langer, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 38 (02) :190-206
[5]  
Bognar J., 1974, Indefinite Inner Product Spaces
[6]  
Chen SP, 1998, SIAM J APPL MATH, V59, P651, DOI 10.1137/S0036139996292015
[7]  
DUFFIN RJ, 1955, J RATION MECH ANAL, V4, P221
[8]  
Edmunds D.E., 2018, Spectral Theory and Differential Operators, Vsecond
[9]   Variational principles for Eigenvalues of self-adjoint operator functions [J].
Eschwé, D ;
Langer, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 49 (03) :287-321
[10]   Exponential stability of semigroups related to operator models in mechanics [J].
Griniv, RO ;
Shkalikov, AA .
MATHEMATICAL NOTES, 2003, 73 (5-6) :618-624