Borel chromatic numbers

被引:129
作者
Kechris, AS [1 ]
Solecki, S
Todorcevic, S
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[3] Inst Matemat, YU-11000 Belgrade, Yugoslavia
[4] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/aima.1998.1771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 44
页数:44
相关论文
共 22 条
[1]  
BLASZCZYK A., 1988, COMMENT MATH U CAROL, V29, P657
[2]   THE STRUCTURE OF HYPERFINITE BOREL EQUIVALENCE-RELATIONS [J].
DOUGHERTY, R ;
JACKSON, S ;
KECHRIS, AS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (01) :193-225
[3]   SHIFT GRAPHS AND LOWER BOUNDS ON RAMSEY NUMBERS R(K)(L-R) [J].
DUFFUS, D ;
LEFMANN, H ;
RODL, V .
DISCRETE MATHEMATICS, 1995, 137 (1-3) :177-187
[4]   THE CHROMATIC NUMBER OF THE PRODUCT OF 2 4-CHROMATIC GRAPHS IS 4 [J].
ELZAHAR, M ;
SAUER, NW .
COMBINATORICA, 1985, 5 (02) :121-126
[5]  
Erdos P., 1984, COMBINATORIAL SET TH
[6]  
ERDOS P, 1968, P GRAPH THEOR C 1966, P83
[7]   ERGODIC EQUIVALENCE RELATIONS, COHOMOLOGY, AND VONNEUMANN ALGEBRAS .1. [J].
FELDMAN, J ;
MOORE, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) :289-324
[8]   THE CHROMATIC NUMBER OF THE PRODUCT OF 2 ALEPH-CHROMATIC GRAPHS CAN BE COUNTABLE [J].
HAJNAL, A .
COMBINATORICA, 1985, 5 (02) :137-139
[9]  
Harner C.C, 1972, J. Comb. Theory, Ser. B, V13, P219, DOI DOI 10.1016/0095-8956(72)90057-3
[10]  
Harrington L. A., 1990, J AM MATH SOC, V3, P903, DOI 10.1090/S0894-0347-1990-1057041-5