Detection of genuine tripartite entanglement based on Bloch representation of density matrices

被引:5
作者
Zhao, Hui [1 ]
Liu, Yu-Qiu [1 ]
Jing, Naihuan [2 ]
Wang, Zhi-Xi [3 ]
Fei, Shao-Ming [3 ,4 ]
机构
[1] Beijing Univ Technol, Fac Sci, Dept Math, Beijing 100124, Peoples R China
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[4] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Genuine multipartite entanglement; Separability; Correlation tensor;
D O I
10.1007/s11128-022-03456-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the genuine multipartite entanglement in tripartite quantum systems. By using the Schmidt decomposition and local unitary transformation, we convert the general states to simpler forms and consider certain matrices from correlation tensors in the Bloch representation of the simplified density matrices. Using these special matrices, we obtain new criteria for genuine multipartite entanglement. Detail examples show that our criteria are able to detect more tripartite entangled and genuine tripartite entangled states than some existing criteria.
引用
收藏
页数:15
相关论文
共 21 条
[1]   Device-Independent Witnesses of Genuine Multipartite Entanglement [J].
Bancal, Jean-Daniel ;
Gisin, Nicolas ;
Liang, Yeong-Cherng ;
Pironio, Stefano .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)
[2]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[3]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[4]  
Chen K, 2003, QUANTUM INF COMPUT, V3, P193
[5]   Improved lower bounds on genuine-multipartite-entanglement concurrence [J].
Chen, Zhi-Hua ;
Ma, Zhi-Hao ;
Chen, Jing-Ling ;
Severini, Simone .
PHYSICAL REVIEW A, 2012, 85 (06)
[6]  
Cui MY., 2016, INT J THEOR PHYS, V56, P3779
[7]  
De Vicente JI, 2007, QUANTUM INF COMPUT, V7, P624
[8]   Multipartite entanglement detection from correlation tensors [J].
de Vicente, Julio I. ;
Huber, Marcus .
PHYSICAL REVIEW A, 2011, 84 (06)
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]   Measure of multipartite entanglement with computable lower bounds [J].
Hong, Yan ;
Gao, Ting ;
Yan, Fengli .
PHYSICAL REVIEW A, 2012, 86 (06)