Nonadiabatic quantum control of valley states in silicon

被引:0
作者
Gardin, Alan [1 ,2 ]
Monaghan, Ross D. [1 ,2 ]
Whittaker, Tyler [1 ,2 ]
Rahman, Rajib [3 ]
Tettamanzi, Giuseppe C. [1 ,2 ]
机构
[1] Univ Adelaide, Sch Phys, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Inst Photon & Adv Sensing, Adelaide, SA 5005, Australia
[3] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
10.1103/PhysRevB.105.075406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nonadiabatic quantum effects, often experimentally observed in semiconductor nanodevices such as single-electron pumps operating at high frequencies, can result in undesirable and uncontrollable behavior. However, when combined with the valley degree of freedom inherent to silicon, these unfavourable effects may be leveraged for quantum information processing schemes. By using an explicit time evolution of the Schrodinger equation, we study numerically nonadiabatic transitions between the two lowest valley states of an electron in a quantum dot formed in a SiGe/Si heterostructure. The presence of a single-atomic layer step at the top SiGe/Si interface opens an anticrossing in the electronic spectrum as the center of the quantum dot is varied. We show that an electric field applied perpendicularly to the interface allows tuning of the anticrossing energy gap. As a result, by moving the electron through this anticrossing, and by electrically varying the energy gap, it is possible to electrically control the probabilities of the two lowest valley states.
引用
收藏
页数:13
相关论文
共 29 条
[1]   Control of valley dynamics in silicon quantum dots in the presence of an interface step [J].
Boross, Peter ;
Szechenyi, Gabor ;
Culcer, Dimitrie ;
Palyi, Andras .
PHYSICAL REVIEW B, 2016, 94 (03)
[2]   Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models [J].
Boykin, TB ;
Klimeck, G ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
PHYSICAL REVIEW B, 2004, 70 (16) :1-12
[3]   Valley splitting in strained silicon quantum wells [J].
Boykin, TB ;
Klimeck, G ;
Eriksson, MA ;
Friesen, M ;
Coppersmith, SN ;
von Allmen, P ;
Oyafuso, F ;
Lee, S .
APPLIED PHYSICS LETTERS, 2004, 84 (01) :115-117
[4]   Valley splitting in finite barrier quantum wells [J].
Boykin, Timothy B. ;
Kharche, Neerav ;
Klimeck, Gerhard .
PHYSICAL REVIEW B, 2008, 77 (24)
[5]  
Bransden B H., 2000, Quantum Mechanics, V2nd edn
[6]   Semiconductor qubits in practice [J].
Chatterjee, Anasua ;
Stevenson, Paul ;
De Franceschi, Silvano ;
Morello, Andrea ;
de Leon, Nathalie P. ;
Kuemmeth, Ferdinand .
NATURE REVIEWS PHYSICS, 2021, 3 (03) :157-177
[7]   A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type [J].
Crank, J ;
Nicolson, P .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (3-4) :207-226
[8]   Valley-Based Noise-Resistant Quantum Computation Using Si Quantum Dots [J].
Culcer, Dimitrie ;
Saraiva, A. L. ;
Koiller, Belita ;
Hu, Xuedong ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)
[9]   Dephasing of Si spin qubits due to charge noise [J].
Culcer, Dimitrie ;
Hu, Xuedong ;
Das Sarma, S. .
APPLIED PHYSICS LETTERS, 2009, 95 (07)
[10]   Nanoscale Distortions of Si Quantum Wells in Si/SiGe Quantum-Electronic Heterostructures [J].
Evans, P. G. ;
Savage, D. E. ;
Prance, J. R. ;
Simmons, C. B. ;
Lagally, M. G. ;
Coppersmith, S. N. ;
Eriksson, M. A. ;
Schuelli, T. U. .
ADVANCED MATERIALS, 2012, 24 (38) :5217-5221