CLIMAT: CLINICALLY-INSPIRED MULTI-AGENT TRANSFORMERS FOR KNEE OSTEOARTHRITIS TRAJECTORY FORECASTING

被引:0
作者
Huy Hoang Nguyen [1 ]
Saarakkala, Simo [1 ,2 ]
Blaschko, Matthew B. [3 ]
Tiulpin, Aleksei [1 ]
机构
[1] Univ Oulu, Oulu, Finland
[2] Oulu Univ Hosp, Oulu, Finland
[3] Katholieke Univ Leuven, Leuven, Belgium
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
基金
美国国家卫生研究院;
关键词
Deep learning; osteoarthritis; prognosis; trajectory forecasting; transformer;
D O I
10.1109/ISBI52829.2022.9761545
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In medical applications, deep learning methods are designed to automate diagnostic tasks. However, a clinically relevant question that practitioners usually face, is how to predict the future trajectory of a disease (prognosis). Current methods for such a problem often require domain knowledge, and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many forecasting problem from multimodal data. Inspired by a clinical decisionmaking process with two agents - a radiologist and a general practitioner, we model a prognosis prediction problem with two transformer-based components that share information between each other. The first block in this model aims to analyze the imaging data, and the second block leverages the internal representations of the first one as inputs, also fusing them with auxiliary patient data. We show the effectiveness of our method in predicting the development of structural knee osteoarthritis changes over time. Our results show that the proposed method outperforms the state-of-the art baselines in terms of various performance metrics. In addition, we empirically show that the existence of the multi-agent transformers with depths of 2 is sufficient to achieve good performances. Our code is publicly available at https: //github.com/MIPT- Oulu/CLIMAT.
引用
收藏
页数:5
相关论文
共 16 条
[1]  
Ba J. L., 2016, arXiv, DOI 10.48550/arXiv:1607.06450
[2]  
Cho KYHY, 2014, Arxiv, DOI [arXiv:1409.1259, 10.48550/arXiv.1409.1259]
[3]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[4]   Osteoarthritis [J].
Glyn-Jones, S. ;
Palmer, A. J. R. ;
Agricola, R. ;
Price, A. J. ;
Vincent, T. L. ;
Weinans, H. ;
Carr, A. J. .
LANCET, 2015, 386 (9991) :376-387
[5]   Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period [J].
Guan, B. ;
Liu, F. ;
Haj-Mirzaian, A. ;
Demehri, S. ;
Samsonov, A. ;
Neogi, T. ;
Guermazi, A. ;
Kijowski, R. .
OSTEOARTHRITIS AND CARTILAGE, 2020, 28 (04) :428-437
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
Heidari B, 2011, CASP J INTERN MED, V2, P205
[8]  
Hendrycks D, 2020, Arxiv, DOI [arXiv:1606.08415, 10.48550/ARXIV.1606.08415]
[9]  
Hochreiter S., 1997, Neural Computation, V9, P1735
[10]  
Hu S., SURVIVAL PREDICTION, P132