Part 2: Pharmacogenetic Variability in Drug Transport and Phase I Anticancer Drug Metabolism

被引:50
作者
Deenen, Maarten J. [1 ,2 ]
Cats, Annemieke [3 ]
Beijnen, Jos H. [4 ,5 ]
Schellens, Jan H. M. [1 ,2 ,5 ]
机构
[1] Netherlands Canc Inst, Dept Med Oncol, Div Clin Pharmacol, NL-1066 CX Amsterdam, Netherlands
[2] Netherlands Canc Inst, Dept Expt Therapy, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, Dept Gastroenterol & Hepatol, NL-1066 CX Amsterdam, Netherlands
[4] Slotervaart Hosp, Dept Pharm & Pharmacol, Amsterdam, Netherlands
[5] Univ Utrecht, Fac Sci, Dept Pharmaceut Sci, Sect Biomed Anal,Div Drug Toxicol, Utrecht, Netherlands
关键词
Pharmacogenetics; Drug transport; Phase I metabolism; Personalized medicine; Oncology; Anticancer drugs; BREAST-CANCER PATIENTS; SINGLE NUCLEOTIDE POLYMORPHISMS; CELL LUNG-CANCER; HUMAN LIVER-MICROSOMES; DIHYDROPYRIMIDINE DEHYDROGENASE-DEFICIENCY; MULTIDRUG-RESISTANCE GENE; CYTIDINE-DEAMINASE GENE; SEVERE 5-FLUOROURACIL-ASSOCIATED TOXICITY; RECEIVING ADJUVANT TAMOXIFEN; HUMAN BLEOMYCIN HYDROLASE;
D O I
10.1634/theoncologist.2010-0259
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Equivalent drug doses in anticancer chemotherapy may lead to wide interpatient variability in drug response reflected by differences in treatment response or in severity of adverse drug reactions. Differences in the pharmacokinetic (PK) and pharmacodynamic (PD) behavior of a drug contribute to variation in treatment outcome among patients. An important factor responsible for this variability is genetic polymorphism in genes that are involved in PK/PD processes, including drug transporters, phase I and II metabolizing enzymes, and drug targets, and other genes that interfere with drug response. In order to achieve personalized pharmacotherapy, drug dosing and treatment selection based on genotype might help to increase treatment efficacy while reducing unnecessary toxicity. We present a series of four reviews about pharmacogenetic variability in anticancer drug treatment. This is the second review in the series and is focused on genetic variability in genes encoding drug transporters (ABCB1 and ABCG2) and phase I drug-metabolizing enzymes (CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, DPYD, CDA and BLMH) and their associations with anticancer drug treatment outcome. Based on the literature reviewed, opportunities for patient-tailored anticancer therapy are presented. The Oncologist 2011;16:820-834
引用
收藏
页码:820 / 834
页数:15
相关论文
共 160 条
[1]   Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non-small-cell lung cancer [J].
Akasaka, Keiichi ;
Kaburagi, Takayuki ;
Yasuda, Shin'ichi ;
Ohmori, Kyoko ;
Abe, Kaori ;
Sagara, Hironori ;
Ueda, Yoshihiko ;
Nagao, Koshu ;
Imura, Johji ;
Imai, Yasuo .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2010, 66 (04) :691-698
[2]  
Aklillu E, 1996, J PHARMACOL EXP THER, V278, P441
[3]   Pharmacogenetic associations of CYP2C19 genotype with in vivo metabolisms and pharmacological effects of thalidomide [J].
Ando, L ;
Price, DK ;
Dahut, WL ;
Cox, MC ;
Reed, E ;
Figg, WD .
CANCER BIOLOGY & THERAPY, 2002, 1 (06) :669-673
[4]   A single nucleotide polymorphism of CYP2B6 found in Japanese enhances catalytic activity by autoactivation [J].
Ariyoshi, N ;
Miyazaki, M ;
Toide, K ;
Sawamura, Y ;
Kamataki, T .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 281 (05) :1256-1260
[5]   Genetic variation in the ATP-binding Cassette Transporter gene ABCG2 (BCRP) in a Swedish population [J].
Bäckström, G ;
Taipalensuu, J ;
Melhus, H ;
Brändström, H ;
Svensson, AC ;
Artursson, P ;
Kindmark, A .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2003, 18 (05) :359-364
[6]   CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes [J].
Bahadur, N ;
Leathart, JBS ;
Mutch, E ;
Steimel-Crespi, D ;
Dunn, SA ;
Gilissen, R ;
Van Houdt, J ;
Hendrickx, J ;
Mannens, G ;
Bohets, H ;
Williams, FM ;
Armstrong, M ;
Crespi, CL ;
Daly, AK .
BIOCHEMICAL PHARMACOLOGY, 2002, 64 (11) :1579-1589
[7]   Pharmacogenetic Pathway Analysis of Docetaxel Elimination [J].
Baker, S. D. ;
Verweij, J. ;
Cusatis, G. A. ;
van Schaik, R. H. ;
Marsh, S. ;
Orwick, S. J. ;
Franke, R. M. ;
Hu, S. ;
Schuetz, E. G. ;
Lamba, V. ;
Messersmith, W. A. ;
Wolff, A. C. ;
Carducci, M. A. ;
Sparreboom, A. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2009, 85 (02) :155-163
[8]   The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users [J].
Bijl, Monique J. ;
van Schaik, Ron H. N. ;
Lammers, Laureen A. ;
Hofman, Albert ;
Vulto, Arnold G. ;
van Gelder, Teun ;
Stricker, Bruno H. Ch. ;
Visser, Loes E. .
BREAST CANCER RESEARCH AND TREATMENT, 2009, 118 (01) :125-130
[9]   A well-tolerated 5-FU-based treatment subsequent to severe capecitabine-induced toxicity in a DPD-deficient patient [J].
Blasco, Helene ;
Boisdron-Celle, Michele ;
Bougnoux, Philippe ;
Calais, Gilles ;
Tournamille, Jean-Franncois ;
Ciccolini, Joseph ;
Autret-Leca, Elisabeth ;
Le Guellec, Chantal .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2008, 65 (06) :966-970
[10]   Metabolism and pharmacokinetics of oxazaphosphorines [J].
Boddy, AV ;
Yule, SM .
CLINICAL PHARMACOKINETICS, 2000, 38 (04) :291-304